1 Introduction

In today’s world, the touch sensor, also known as a touch screen or touch panel, is used in many different fields and applications. It has become one of the most popular tools for human-machinery and /or human-computer interfaces. In more and more devices and places, the touch sensor has become the sole interface.

Among the several different types of touch sensors or touch screens (TS), the resistive ones are currently the most widely used. TI provides a family of resistive touch screen controller (TSC) devices to control the resistive TSs, which include: ADS7843, ADS7845, ADS7846, TSC2000, TSC2003, TSC2046, and the latest new devices: TSC2004, TSC2005, TSC2006, TSC2007, and TSC2008. For the performance and digital interface of these devices, see the relevant data sheets on the TI Web site.

With a TI TSC device, a user can obtain the 2-dimensional (X-axis and Y-axis) or 3-dimensional (X-axis, Y-axis, and Z-axis) data that indicates or represents the touch position (X and Y) and pressure (Z) on the TS.

The most common usage of a touch screen system, including a TS and a TSC, is to locate the touch position so as to obtain the X, Y, and Z data. With this data, users can obtain a graphic view of the finger or stylus touch and its traces. An example is shown in Figure 1, where the motion on the TS is translated into pixels on the picture.
2 Use TS as Multiple Scroll Bars

A scroll bar can be used to continuously move and adjust various physical volumes, values, or parameters, such as the multiple audio EQ bars.

The finger or stylus moving direction on a TS can be sensed and computed to generate multiple virtual scroll bars as shown in Figure 2.

Figure 1. Use TSC Data for Graph and Position

Besides locating touching positions, the touch data and its other mathematical expression can be further used in various other applications, and to perform various and multiple functions/tools/devices. This application report presents several simple examples for the user's reference.
In the example of Figure 2 are four scroll bars. When a touch occurs along the Y-axis within the first quarter of the X-axis, the Band 0 is active; when a touch moves on the 2nd quarter, the Band 1 is active; ..., and when a touch is on the last quarter, the Band 3 is active, as shown in Figure 3.
You may hold or drag the yellow handle in Figure 2 and move up/down along the TS's Y-axis or roll a finger up/down on a small area on the TS.

More scroll bars can be placed along the X-axis even though Figure 2 shows only four bars as an example.

The Action green LED in Figure 2 lights as soon as a touch on the TS is sensed; the Active Band indicator shows which of the four bands the touching occurs in, and the Speed slider beneath the bands can be used to select the bar moving rate.

To program the scroll bar in Figure 2, the expression was used:

\[
Y_{\text{bar}} = \begin{cases}
Y_{\text{bar}} + Y\delta & \text{if } \Delta Y = Y(k) - Y(k-1) > 0 \\
Y_{\text{bar}} & \text{if } \Delta Y = Y(k) - Y(k-1) = 0 \\
Y_{\text{bar}} - Y\delta & \text{if } \Delta Y = Y(k) - Y(k-1) < 0
\end{cases}
\]

(1)

Where \(Y\text{bar}\) is the scroll bar position; and \(Y\delta\) is the moving rate of the scroll bar, programmable through the Speed slider.
2.1 Use Touch on a Point as Pressure Button

The pressure on any single point of a touch screen can be used through the pressure button function, as shown in Figure 4.

![Image of Use TSC for Multiple Functions VI](image-url)

Figure 4. Use TSC Data for Pressure Button

In Figure 4, the instant **Pressure**, \(P \), on the TS is summed and shown in the **Pressure Accumulation** indicator. The pressure accumulation \(P_{\text{Accum}} \) is obtained from:

\[
P_{\text{Accum}} = P_{\text{Accum}} + P \quad \text{if } P > 0
\]

Because the indicator is a logarithmic scale, it seems that it rises slower as pressure goes higher. The reset button is used to reset the indicator to zero.
Use TS as Multiple Scroll Bars

The instant **Pressure** of a touch on the TS is indicated in the **Pressure** box of Figure 4 and is calculated from:

\[P = A - B \times R_{\text{TOUCH}} \] \hspace{1cm} (3)

where the A and B are two constants that convert the measured data to the proper pressure unit. In this example, A=5 and B=9 were used. And the \(R_{\text{TOUCH}} \) in Equation 3 was obtained from:

\[R_{\text{TOUCH}} = R_{X-\text{plate}} \times \frac{X_{\text{position}}}{4096} \left(\frac{Z_2}{Z_1} - 1 \right) \] \hspace{1cm} (4)

which is the pressure measurement equation, as described in the TI TSC data sheet. See a TI touch screen data sheet for a detailed explanation of Equation 4.

In Figure 4, the green LED, labeled **Pressure ON**, indicates a pressure has been detected. The LED is ON whenever a touch is on the TS, and OFF when releasing.

Any one point on a TS can be designated as a pressure button.
2.2 Use Area Rotation Touch as Dial

Finger tip rotating, clockwise or counter-clockwise, on the top of a TS can be sensed and used to simulate an analog dial, as shown in Figure 5.

![Image of TS for Multiple Virtual Dial Panel/Knob and Switch/Bottom](image_url)

Figure 5. Using TI TSC Data for Multiple Virtual Dial Panel/Knob and Switch/Bottom

In Figure 5, a dial is located at the center of the TS. To perform the virtual analog dial function, the rolling angle, or α of the dial is calculated from:

$$\alpha = \arctan\left(\frac{Y - Y_0}{X - X_0}\right)$$

Where $Y_0 = X_0 = 2048$, the center location of the dial.
The dial needle position, \(P_{\text{dial}} \), has been programmed as an inverting proportional function of \(\Delta \alpha \) or the differential of \(\alpha \), as expressed by Equation 6:

\[
P_{\text{dial}} = \begin{cases}
P_{\text{dial}} - P\delta & \text{if } \Delta \alpha > 0 \\
P_{\text{dial}} & \text{if } \Delta \alpha = 0 \\
P_{\text{dial}} + P\delta & \text{if } \Delta \alpha < 0
\end{cases}
\]

(6)

Where \(\Delta \alpha = \alpha(k) - \alpha(k-1) \). When the \(\alpha \) increases (turning the dial counter-clockwise), \(P_{\text{dial}} \) decreases; if \(\alpha \) decreases (turning clockwise), \(P_{\text{dial}} \) increases.

Additionally, two switching buttons are located under the dial in the Figure 5; they can be turned ON or OFF. Touching the left-bottom corner of the TS, the Button#1 is switched ON (red) or OFF (black); touching the right-bottom corner, the Button#2 is turned ON (green) or OFF (black). Thus, a touch becomes a switcher and can be used as a Boolean or digital device, such as a power ON/OFF switcher, a Start/Stop button, and so on.

Figure 6 shows the dial and buttons position on the screen, designated for this particular example.

Figure 6. Divide Touch Panel for Multiple Functions

As one can see from these illustrations, there are spare areas on the TS that can be used as more switches, buttons, dials, bars, and other devices/parts, as is discussed in the next section.

2.3 Use One Screen for Multiple Functions

The foregoing examples used one (or two) function with one TS. Obviously, a TS can be divided into many areas/points to perform multiple functions. As an example, Figure 7 shows dividing a single screen into sections to perform all multiple functions previously discussed.
3 Conclusions

This application report presents examples that have been programmed, applied, and tested on a TI TSC2005EVM-PDK set.

By using simple differential (scroll bar or dial), integrate (pressure accumulator), or trigonometric (dial) expressions of the touch data X, Y, and/or Z, a variety of virtual tools/devices can be generated and applied, with a resistive TS controlled under a TI resistive TSC.

Users can use a single TS, by programming multiple software tabs, to perform many different functions, and/or divide the panel into many different areas for these multiple functions.

To obtain the foregoing functions in demonstration software, which have been tested on a TI TSC2005EVM-PDK and can run on your personal computer, send a request to:

dataconvapps@list.ti.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>Low Power Wireless</td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated