A Simple Glass Breakage Detector Using the MSP430

ABSTRACT
This application report describes a simple glass breakage detector using the MSP430F2274 ultralow-power microcontroller. The algorithm is based on the spectral analysis of a typical glass breakage signal. The input signal spectrum, limited to a frequency of 20 kHz, is processed for a valid glass breakage. Various signal characteristics such as peak content, number of zero crossings, and frequency composition are analyzed. Real-time signal processing is achieved by implementing and using a low-order bireciprocal lattice wave digital filter (LWDF). A glass breakage alert is indicated by an onboard buzzer and an LED. The entire setup is designed to operate at low power, allowing long battery life.

Contents
1 Introduction .. 2
2 Hardware Description .. 2
3 Software Description .. 6
Appendix A Hardware Schematic .. 17
Appendix B Test Setup .. 18
Appendix C References .. 20

List of Figures
1 Setup for Glass Breakage Detector Using MSP430F2274 .. 3
2 Current Consumption Profile During No Activity ... 5
3 Current Consumption Profile During Activity on the Microphone 5
4 Current Consumption Profile During Glass Breakage Detection 6
5 Flowchart for Initializations .. 7
6 Flowchart of Timer_A ISR Functionality ... 9
7 Flowchart of ADC10 ISR Functionality ... 10
8 First Stage Signal Analysis Flowchart .. 11
9 Glass Breakage Signal Analysis in Time Domain ... 12
10 Signal Flow Diagram of a Seventh-Order Bireciprocal LWDF 13
11 Frequency Response of Seventh-Order Bireciprocal LWDF 14
12 Second Stage Signal Analysis Flowchart ... 15
A-1 MSP430F2274 Glass Breakage Detector Board Schematic 17
B-1 Test Setup (Side View) .. 18
B-2 Test Setup (Top View) ... 18
B-3 Test Setup (Front View) .. 19
B-4 Test Setup (Sound-Level Measurement) ... 19
1 Introduction

A glass breakage detector can help ensure safety in buildings and homes. It is a simple mechanism to detect illegal entry through glass windows and doors. The detector analyzes acoustic signals produced during a glass breakage. The frequency spectrum of the sounds produced during a glass breakage varies with the type of glass used in these doors and windows. This calls for a variety of solutions tailored to types of glass used. In this application report, typical glass breakage sounds have been used as a tool to design the alert mechanism. These acoustic signals are analyzed after being captured by an onboard microphone. The steps that follow this capture are explained in detail in this report. The MSP430F2274 is the microcontroller chosen to do this analysis.[2] Although the processor can operate up to 16 MHz, an active-mode frequency of 12 MHz is used.[1] Furthermore, the CPU operating frequency is changed on the fly between 8 MHz and 12 MHz to lower power consumption. The required peripherals are switched on every 2 ms, only when the input signal needs to be captured, to ensure optimal power management. An optional anti-aliasing filter (AAF) in hardware is activated to ensure the signal spectrum is restricted to 20 kHz. The total power consumption of the system is about 80 µA with the AAF enabled and about 50 µA with the AAF disabled. The entire hardware setup, software flow, and test setup are discussed in this report. The following sections provide a complete description of the hardware, software, and test setup. The complete details of this reference design are provided in a zip file that accompanies this application report.

2 Hardware Description

This section describes the glass breakage detector board using the MSP430F2274.

2.1 Device Specifications

The MSP430F2274 is a 16-bit microcontroller (MCU) from the 2xx family of the ultralow-power MSP430 family of devices from Texas Instruments.[1, 2] The supply voltage required for the microcontroller spans a broad range of 1.8 V to 3.6 V. The MCU is capable of operating at frequencies up to 16 MHz. The CPU has a 16-bit RISC architecture with a total of 51 instructions (27 core and 24 emulated). It supports a single-cycle shift and single-cycle add/subtract instructions. This enables efficient multiplication in the absence of a hardware multiplier.[4] The MCU also has an internal very-low-power low-frequency oscillator (VLO) that operates at 12 kHz at room temperature. This oscillator eliminates the need for an external onboard crystal for the operation of the device. However, an option has been provided on the board to use external crystal/resonators of up to 16 MHz. The MCU has two 16-bit timers (Timer_A and Timer_B), each with three capture/compare registers. An integrated 10-bit analog-to-digital converter (ADC10) supports conversion rates of up to 200 kilo-samples per second (ksps). The ADC10 can be configured to work with on-chip operational amplifiers (OA0 and OA1) for analog input signal conditioning. The memory model supports up to 32 kB of flash memory and 1 kB of RAM in addition to 256 bytes of information memory. This device comes with four 8-bit I/O ports that can be used to control external devices. The current consumption of 0.7 µA during standby mode and active mode current of just 250 µA at 1 MHz make this device an excellent choice for battery-powered applications.
Figure 1 shows the setup for the glass breakage detector using this device.

![Figure 1. Setup for Glass Breakage Detector Using MSP430F2274](image)

The microphone captures the analog input, and a buzzer or LED indicates detection of glass breakage. The op amps internal to the MSP430 are connected to a few external passive components as part of the design of active analog filters.

2.2 Power Supply

The board is powered by two 1.5-V AAA batteries delivering a supply voltage of 3 V. For reliable operation at 12 MHz CPU frequency, the supply voltage (DVCC) should at least be 2.7 V. A low-battery detection has not been implemented for this demonstration application but can be easily added by utilizing the internal ADC10.

2.3 Microphone

The input signal is captured by a Panasonic WM-61A microphone that has a frequency response between 20 Hz and 20 kHz and can operate at voltages up to 10 V. The microphone has a high signal-to-noise ratio that is approximately 60 dB. It is turned on every 2 ms when the input signal needs to be captured. This on/off mechanism is controlled in software by MSP430 port pin P4.0, which provides the supply voltage of DVCC to the microphone. The maximum current consumption during this capture is approximately 0.5 mA. The microphone is physically disabled by placing a jumper on header X3.

2.4 LED and Buzzer Alert

Glass breakage detection is indicated via a buzzer and/or an LED. The buzzer used in this application is the Panasonic EFB-RL37C20. This buzzer is capable of sound level outputs of up to 106 dB at a frequency of 3.7 kHz. For high sound levels, a large voltage must be supplied to this buzzer. In order to obtain this high voltage, a dc/dc boost converter is used. The low-power TPS61040 from Texas Instruments, which is capable of providing an output voltage of 28 V when sourced by a 3-V voltage supply, is used. The current consumption during its operation is about 15 mA. This device also comes with an enable signal that is controlled in software by MSP430 port pin P3.7 to turn on only during a glass breakage. The buzzer circuit can also be disabled using the onboard jumper (JP3) that physically disconnects the power to the buzzer, so that indications can be given using only the LED.
2.5 Interface to CC1100/2500 Devices

The MSP430 has proven to be a great solution for ultralow-power applications. For wireless applications, the MSP430 must interface to an existing transceivers. One of the leading devices that support this is the TI/Chipcon devices CC1100/CC2500. They form low-cost single-chip transceivers equipped with serial interfaces that can be used to directly communicate with the MSP430.[7] On this board, an option is provided to interface to the CC1100/2500 evaluation boards, and libraries have been published to be used with the MSP430. These libraries are available for download and can be used to develop a wireless glass breakage detector with the existing board.[7]

2.6 Operational Amplifiers (OAs)

The MSP430F2274 has two OAs that are configurable using software. The gain of these OAs can be set by internal resistor ladder settings. Depending on the choice to have an AAF, one or both of the OAs are used in this application. The first OA (OA0) is used as an inverting amplifier with a gain of 7. The output of OA0 is connected internally to one of the channels of ADC10 for further processing. If the AAF is needed, the output of OA0 is internally connected to OA1, which is configured as a unity-gain low-pass filter. The filter is a second-order Butterworth filter, realized through a Sallen-Key circuit with the 3-dB cutoff set at 19.2 kHz. For both of these OAs, the reference is maintained at the voltage $V_{CC}/2$.

2.7 Internal Very-Low-Power Oscillator (VLO)

The MSP430F2274 has an internal VLO that typically operates at 12 kHz. With the VLO as a clock source, the MSP430 can be operated in low power mode 3 (LPM3). This also eliminates the need for an external low-frequency crystal. The VLO is the clock source to the internal timer, which is functional when the device is in standby or LPM3. Timer_A is responsible for the periodic wake up every 2 ms. Due to the temperature drift of the VLO frequency, this wake-up time could be different. An algorithm to consider the drift of the VLO and its impact on the wake up time of 2 ms has not been implemented but can be added by the user. For example, the factory-provided DCO calibration constants in the device’s flash memory can be used to determine the VLO frequency and adjust the length of the wake-up interval accordingly.

2.8 JTAG Interface

The board has been provided with a standard 14-pin header for interface to programming tools via JTAG. A 2-wire interface known as the Spy-Bi-Wire (SBW) is used instead of the conventional 4-wire interface for the JTAG interface in this design. This 2-wire interface is supported only by some in the MSP430 2xx family of devices. The user must make this selection to program the MSP430F2274. Note that for the SBW communication, the USB FET debugger must be used.

2.9 Current Consumption

The board is sourced by the two 1.5-V AAA batteries, which have a capacity of about 800 mAh. This gives a battery life of up to 416 days at 80-μA current consumption and up to 666 days at 50-μA current consumption. These figures are with the peripherals switched off when not in operation. The current consumption can be further reduced if the wake up is increased from the present interval of 2 ms. However, a longer interval increases the chances of missing a sound event. Figure 2 through Figure 4 are graphical representations of the current consumption for this board.
Figure 2 shows the current consumption profile when there is no activity. The device goes into active mode 1 (CPU at 8 MHz), denoted by AM1, for 37.5 µs once every 2 ms.

![Current Consumption Profile During No Activity](image)

Figure 2. Current Consumption Profile During No Activity

Figure 3 shows the current consumption profile when there is activity detected on the microphone. The device goes into active mode 1 (CPU at 8 MHz) first for 37.5 µs and then, if the signal is a possible glass breakage, the CPU is configured to work at 12 MHz, denoted as AM2. Samples are accumulated for a period of 60 ms, and signal analysis (as described in Section 3.4) is done on every sample. If the signal is not found to be a glass breakage, the device goes back to LPM3 with the Timer_A reconfigured.

![Current Consumption Profile During Activity on the Microphone](image)

Figure 3. Current Consumption Profile During Activity on the Microphone
Software Description

Figure 4 shows the current consumption profile when there is a glass breakage. This is a step further in comparison to Figure 3. If a decision is made in favor of a glass breakage detection, the CPU continues in AM2, during which time the LED and buzzer are on for a period of three seconds. After this time, the device is reinitialized and configured to go back to LPM3.

![Figure 4. Current Consumption Profile During Glass Breakage Detection](image)

3 Software Description

This section discusses the flow and description of the software modules used in the glass breakage detector using the MSP430F2274.

3.1 Initialization Routine

Figure 5 is a high-level flow diagram of the software execution for initialization of the board. This step occurs at the beginning and after a glass breakage detect has been issued.

This section of the program initializes all the peripherals necessary in the detection routine. The peripherals initialized by this program include Timer_A, CPU clock, ADC10, OAs, and port pins. The first step is to disable the watchdog timer to avoid an unintended watchdog timer reset. The CPU clock is then set to 8 MHz, and port pins that correspond to the analog inputs are set accordingly. Unused pins are set to outputs, and their values set to high to avoid current consumption. A check on the AAF_select flag is made to enable or disable the AAF. A zero on this flag disables the AAF, and a non-zero value enables it. If this filter is disabled, the input to ADC10 is the output of OA0 and appears at channel A1 of the ADC10. With AAF enabled, the input to ADC10 is the output of OA1, which appears at channel A13 of ADC10. In both cases, the ADC10 is configured with its clock set at SMCLK/3 and for single-conversion mode. Independent of the choice made on the use of AAF, both OA0 and OA1 are configured but not enabled. As mentioned previously, OA0 is configured as an inverting amplifier with a gain of 7 and OA1 as a unity gain buffer. After these initializations are complete, the device enters LPM3, during which time all of the clocks except ACLK (chosen from VLO) are switched off. Timer_A, which is configured to generate an interrupt every 2 ms, wakes the device from this mode.
START
System initializations
Initialize stack pointer
Disable watchdog timer
Set CPU clock = 8 MHz
Initialize port pins

Anti-Alias Filter (AAF) selection
Is AAF_select set?

Yes
Set ADC10 to AAF wake-up mode
Use channel A13 as input to ADC
Select single-channel conversion
Sample-and-hold set to eight clock cycles
ADC10CLK = SMCLK/3

No
Set ADC10 to no AAF wake-up mode
Use channel A1 as input to ADC
Select single-channel conversion
Sample-and-hold set to eight clock cycles
ADC10CLK = SMCLK/3

Operational amplifiers OA0 and OA1 initializations
OA0 inverting PGA gain = 7, Used as amplifier
OA1 unity gain, Used as an anti-aliasing filter

Timer_A initializations
Timer counter register TACCRO set to 2-ms wake up
Timer clock source TACLK = VLO = 12 kHz
Mode of operation set to “Toggle mode”

Variable initializations
Initialize all variables used to zero

Timer_A enabled
Enter LPM3 mode with interrupts enabled

END

Figure 5. Flowchart for Initializations
3.2 **Timer_A**

In this application, Timer_A is used to generate the periodic wake up every 2 ms. The timer clock is sourced from the on-chip VLO, which operates at 12 kHz at room temperature. The timer counter TACCR0 is set to a value to generate an interrupt every 2 ms at the VLO clock. The input signal measurement for a glass breakage detect is done in the Timer_A interrupt service routine (ISR). The program flow is shown in Figure 6. The external microphone is first enabled, and then OA0 and/or OA1 is enabled, depending on the choice made to use the AAF. ADC10 is then enabled to convert the incoming signal either at channel A13 or channel A1. For completed conversions, the digitized samples are first converted to a bipolar format by subtracting a value equal to 520, which is approximately $-\frac{\text{DV}_{\text{CC}}}{2}$. The resulting value is compared to the thresholds -40 and $+90$, which distinguish spurious noisy inputs from a true sound event. In the absence of any sound event, all the peripherals are switched off with Timer_A reconfigured to work in LPM3 mode. On the other hand, if the sound levels are significant, the CPU clock is increased from 8 MHz to 12 MHz. ADC10 is reconfigured for repeated single-channel conversions at a sampling rate approximately of 39 ksp. Program control is passed on to the ADC10 ISR, which performs the signal analysis of the incoming signal to detect a glass breakage.
START

Timer_A disabled
External microphone enabled
Offset voltage Vc/2 enabled for OA0
OA0 amplifier enabled

AAF_select flag set?

OA1 anti-aliasing filter enabled
Settling time of 30 µs for OA1

Settling time of 6 µs for OA0

ADC10 enabled and conversion started

Conversion complete?

Result = Conversion result − 520

Result > 90?

Result < −40?

OA0 and OA1 disabled
ADC10 disabled
External microphone disabled
Offset Vc/2 disabled
Timer_A reconfigured for 2-ms interrupt

Set CPU clock = 12 MHz
ADC10 disabled

OA1 enabled? or AAF chosen?

Set ADC10 to AAF continuous mode
ADC input channel A13
Repeated single-channel conversion
Sample-and-hold set to 64 clock cycles
ADC10CLK = SMCLK/4

Set ADC10 to no AAF continuous mode
ADC input channel A1
Repeated single-channel conversion
Sample-and-hold set to 64 clock cycles
ADC10CLK = SMCLK/4

ADC10 enabled for conversion
Exit from LPM3

END

Figure 6. Flowchart of Timer_A ISR Functionality
3.3 ADC10

The MSP430F2274 has an integrated 10-bit analog-to-digital converter (ADC) capable of sampling rates of up to 200 ksp/s using the internal reference. ADC10 is turned on only at the beginning of the Timer_A ISR, to ensure low current consumption. In continuous conversion mode, the sampling frequency \(f_s \) is set at a rate of 38.96 ksp/s at a typical CPU frequency of 12 MHz. The input channel to ADC10 is connected to different OAs, depending on the choice made to have the AAF. Once an active conversion is complete, the ADC10 is switched off. The ADC10 ISR is used to perform the signal analysis and determine a glass breakage. For real-time operation, the entire processing must be complete before the arrival of the next sample. This number of available CPU cycles between successive sampling instants is approximately 300.

The ADC10 ISR is active only after a valid sound event is detected. The complete signal analysis is done in this ISR. Each converted sample is converted to a bipolar signal by subtracting 512. Figure 7 shows the software flowchart in this ISR.

![Flowchart of ADC10 ISR Functionality](image)

The signal analysis routine forms a major part of this ISR and is dealt with in detail in Section 3.4. ADC10 is active until 60 ms of the incoming signal is passed through a stage of preliminary processing. Further processing of this data does not require the ADC10 to remain active, and it is switched off.

3.4 Signal Analysis

This portion of the software implements the methodologies used to detect a glass breakage. The signal analysis is split into two parts. The first part of the signal analysis is done every sample and is completed before the arrival of the next sample. The second part of the signal analysis is done on 60 ms of the incoming data that has passed through the first stage of the signal analysis. This is not done on a sample-by-sample basis, but over 2336 samples that correspond to 60 ms of the incoming sample. The duration of 60 ms is not based on any requirement of the algorithm but was chosen as a convenient number for efficient processing.
3.4.1 First Stage of Processing

The first stage of processing is done every sample once a sound event has been detected. The summary of operations for this processing is shown in Figure 8.

Figure 8. First Stage Signal Analysis Flowchart
3.4.1.1 **Signal Averaging, Peak Detection, and Zero Crossings**

To reduce noise in the incoming signal, a signal averaging is done. The averaged signal is obtained using a simple accumulate function of the current input sample and the previous three samples. This process is needed only to obtain accurate results during peak detection and zero crossings. An integration of the positive nonaveraged signal is done to facilitate the second stage of processing. During this integration, a check for overflow is done and kept count to accommodate a 32-bit result. The number of zero crossings of the averaged signal is done as part of the algorithm used to detect a glass breakage. Figure 9 shows the signal averaging, peak detection, and the zero crossings of the averaged signal, respectively.

![Glass breakage signal analysis](image)

Figure 9. Glass Breakage Signal Analysis in Time Domain
3.4.1.2 **High-Pass Filtering**

The non-averaged signal is then passed through a high-pass filter with a cutoff set at one-fourth the sampling frequency (9.7 kHz). This is done to remove the low-frequency signals to decide on a glass breakage. The lattice wave digital filter (LWDF) is used to do this filtering. The LWDF is well suited for microcontrollers without a hardware multiplier.[3] The LWDF exhibits excellent stability properties over nonlinear conditions and has a good dynamic range in its coefficients. The bireciprocal filter structure of seventh order is chosen in this application. The LWDF gives one output sample every sample period, and this output is also integrated to facilitate the second stage of processing. Similarly, during this integration, the overflow is considered, and a 32-bit result is accommodated. The signal flow diagram of the seventh-order bireciprocal LWDF is shown in Figure 10. During the signal analysis, high-pass filtering is done using the LWDF.[5]

![Signal Flow Diagram of a Seventh-Order Bireciprocal LWDF](image)

Figure 10. Signal Flow Diagram of a Seventh-Order Bireciprocal LWDF

The LWDF structure is able to simultaneously give the complimentary output to the HPF with just one extra instruction cycle. The entire filtering operation is done in only 153 instruction cycles. The filter specifications and the resulting coefficients are:

Filter specifications:
- Filter response type = High pass
- Sampling frequency = 38.960 kHz
- 3-dB cutoff frequency = 9.74 kHz
- Stop-band attenuation = 44 dB
- Filter type = Elliptical
- Filter structure = Bireciprocal
- Filter order = 7
- Filter coefficients = \(-0.109375\), \(-0.375\), and \(-0.75\)
The frequency response of this LWDF with its complimentary counterpart is shown in Figure 11.

![Frequency Response of Seventh-Order Bireciprocal LWDF](image)

Figure 11. Frequency Response of Seventh-Order Bireciprocal LWDF

3.4.2 **Second Stage of Processing**

The second stage of processing does not require a real-time operation. It is done only after 60 ms of the input signal has passed through the first stage of processing. Some of the parameters evaluated during the first stage in conjunction to some new processing are used to complete the process of a glass breakage detect. The summary of operations is given as a flowchart in Figure 12.
START

Disable ADC10, Timer_A, OA0, OA1

Yes

No

Yes

No

Signal_overflow_count < Filtered_signal_overflow_count?

Yes

No

Signal_overflow_count = 0?

Yes

No

Filtered_signal_overflow_count < 1?

Yes

No

Signal_overflow_count < 1?

No

Yes

Shift right integ_HPF_total once through carry = 1

Filtered_signal_overflow_count--

Shift right integ_HPF_total once through carry = 0

Shift right integ_total once through carry = 1

Signal_overflow_count--

Yes

No

CALL division routine to get ratio

Ratio = integ_total/integ_HPF_total

1.75 ≤ Ratio ≤ 7

Yes

No

160 ≤ Peak_count ≤ 320

Yes

No

95 ≤ Zero_cross_count ≤ 300

Yes

No

Set glass breakage detect

Enable buzzer for three seconds and set LED

Restart the glass breakage detector

Figure 12. Second Stage Signal Analysis Flowchart
3.4.2.1 Frequency Composition Ratio

During the first stage of processing, the incoming signal was accumulated for the entire period of 60 ms. This is termed "Signal integration" in Figure 8. Also, the filtered signal (i.e., the output of the LWDF) was correspondingly accumulated. This was termed "Filtered signal integration" in Figure 8. A ratio of these accumulated values compared to a fixed threshold is done in the detection of a glass breakage. To obtain a ratio of these runtime values, integer-integer division must be performed. An optimized 16-bit integer division routine has been implemented to do this.[6] The routine is separated into two parts: one that calculates the integer part of the quotient and one that calculates the fractional. To calculate the approximate fractional part, the divisor is simply divided by four and the result subtracted from the remainder of the integer. A counter is used to store how many times one-fourth of the divider fits into the remainder, thus calculating an approximation of the fractional part in increments of 0.25. If the ratio of the "Signal integration" to the "Filtered Signal integration" fails to fall in the range of 1.75 to 7, a false flag is set, halting further processing. These fixed threshold values vary with different types of glass, and it is left to the end users to set these thresholds based on the spectrum analysis of their glass breakage signal.

3.4.2.2 Peak and Zero-Crossing Count

During the first stage of processing, the number of peaks and zero crossings of the samples were counted. These values are now used to detect a glass breakage. This comparison is done if the ratio condition is satisfied. A false flag is set if the number of peaks falls outside the range of 160 to 320 and if the number of zero crossings falls outside the range of 95 to 300. These fixed values again depend on the type of glass used.

3.4.2.3 Glass Breakage Detect

If none of the false flags are set, then a glass breakage detect is issued. This immediately enables the buzzer and the LED for indication. The buzzer is turned on for a period of three seconds and then turned off. The device then goes back into its wake-up mode settings and is ready for the next detection.
Appendix A Hardware Schematic

This appendix shows the hardware design schematic for the glass breakage detector board. Figure A-1 gives the schematic of this board. A zip file accompanying this document has all of the necessary files to reproduce the hardware and software designs.

Figure A-1. MSP430F2274 Glass Breakage Detector Board Schematic
Appendix B Test Setup

This appendix describes the test setup for the verification of this glass breakage detector. Various glass breakage test files were obtained from a sound effects vendor via the website (www.sounddogs.com). Some of the tests were performed with increased sound level of the original sound files to ensure that all sound files have nearly the same sound pressure level. A specified sound level is measured at a certain distance from the center of the membrane of the main box while a particular sine test tone is replayed. The measurement setup is shown in Figure B-1 through Figure B-3.

![Figure B-1. Test Setup (Side View)](image1)

![Figure B-2. Test Setup (Top View)](image2)
Figure B-3. Test Setup (Front View)

Figure B-4. Test Setup (Sound-Level Measurement)
Appendix C References

1. MSP430x2xx Family User Guide (SLAU144)
2. MSP430x22x2, MSP430x22x4 data sheet (SLAS504)
5. Venkat, Kripasagar, *Wave Digital Filtering Using the MSP430* (SLAA331)
7. Quiring, Keith, *MSP430 Interface to the CC1100/2500 Code Library* (SLAA325)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>Low Power</td>
<td>Telephony</td>
</tr>
<tr>
<td>Wireless</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated