TLV320AIC3xEVM-PDK Series Troubleshooting Guide

Jorge F. Arbona

Portable Audio Converters

Abstract

This application report describes the driver installation procedure for all TLV320AIC3xEVM product development kits and the different scenarios that may arise in the process. In general, the installation process is straightforward. A successful installation requires both hardware and software to be set correctly.

1 Overview

The TLV320AIC3xEVM-PDK series uses a USB-based motherboard called the USB-MODEVM interface board. The USB-MODEVM motherboard allows communication of both audio and control data between the codec under evaluation and a Microsoft ${ }^{T M}$ Windows ${ }^{\text {TM }}$ XP-based personal computer (PC). Although this guide can be used for a first-time setup, it is designed to troubleshoot problems by minimizing the variables that can cause an unsuccessful installation.

2 Hardware Setup

The first step toward a successful installation is to ensure that the hardware is set correctly. The TLV320AIC3xEVM-PDK hardware is comprised of the TLV320AIC3xEVM board and the USB-MODEVM interface board. The USB-MODEVM has an onboard EEPROM which contains the firmware used by the onboard TAS1020B USB Streaming Controller (SLES025) device to communicate with the PC. For maximum flexibility, the TLV320AIC3xEVM board also has an onboard EEPROM. However, only one EEPROM with $I^{2} C^{T M}$ address 1010000 b can be present at a time. When powered up, the TAS1020B looks for firmware located at that $I^{2} \mathrm{C}$ address. Currently, the TLV320AIC3xEVM-PDK uses the firmware located at the USB-MODEVM's onboard EEPROM.

[^0]Follow these steps to ensure a proper hardware configuration:

1. Ensure that the TLV320AIC3xEVM's onboard EEPROM has the least significant bits of its $\mathrm{I}^{2} \mathrm{C}$ address set to anything different than 000b. Check the corresponding EVM User's Guide Default Jumper Location table for the appropriate jumper to remove. For example, JMP18 on the TLV320AIC33EVM (SBAU114) selects the onboard EEPROM as the firmware source; this jumper must be left open. This ensures that the TLV320AIC3xEVM's onboard EEPROM does not conflict with the USB-MODEVM's onboard EEPROM.
2. SW2 on the USB-MODEVM must be set as in Figure 1: SW2.8 (EXT MCLK) is set to HI (OFF) whereas all other switches (SW2.1-SW2.7) are set to LO (ON). This switch setting selects the USB-MODEM's EEPROM as the firmware source and is used for normal operation of the GUI using USB Audio. For external audio configurations, see the user's guide corresponding to the EVM being evaluated.

Figure 1. USB-MODEVM SW2 Settings
Table 1 lists the USB-MODEVM's default jumper and switch settings:
Table 1. USB-MODEVM Default Jumper and Switch Settings

Switch/Jumper	Setting	Label
SW1	SW1-2 ON	1.8VD EN
	SW1-1 ON	3.3VD EN
SW2	SW2-8 OFF (HI)	EXT MCK
	SW2-7 ON (LO)	USB RST
	SW2-6 ON (LO)	USB SPI
	SW2-5 ON (LO)	USB MCK
	SW2-4 ON (LO)	USBI2S
	SW2-3 ON (LO)	A2 (USB-MODEM onboard EEPROM CHIP SELECT 2)
	SW2-2 ON (LO)	A1 (USB-MODEM onboard EEPROM CHIP SELECT 1)
	SW2-1 ON (LO)	A0 (USB-MODEM onboard EEPROM CHIP SELECT 0)
SW3	SW3-8 OFF	1.2 V
	SW3-7 OFF	1.4 V
	SW3-6 OFF	1.6 V
	SW3-5 OFF	1.8 V
	SW3-4 OFF	2.0 V
	SW3-3 OFF	2.5 V

Table 1. USB-MODEVM Default Jumper and Switch Settings (continued)

Switch/Jumper	Setting	Label
	SW3-2 OFF	3.0 V
	SW3-1 ON	3.3 V
JMP1	Installed	+5 V
JMP2	Installed	GND
JMP3	Removed	
JMP4	Removed	
JMP5	Connect 2 to 3 (FSX)	
JMP6	Connect 1 to 2 (USB)	+5 VD
JMP7	Connect 2 to 3	MCKU
JMP8	Removed	

3 Device Driver Troubleshooting

3.1 Is it a hardware problem?

The following steps can most likely determine if the problem is being caused by an incorrect hardware configuration:

1. Connect a USB cable from between the USB-MODEVM and the PC. If a Found New Hardware Wizard window appears, click the Cancel button. An orange LED (D2) on the USB-MODEVM is lit.
2. Open the Windows ${ }^{\text {TM }}$ Device Manager. Two new devices appear as Other devices > USB-MODEVM and Sound, video and game controllers > USB Audio Device as shown in Figure 2A. If the GUI software was previously installed, it may show up as in Figure 2B or Figure 2C. On cases 2A and 2B, proceed with step 4. Case 2C shows a successfully installed driver and no further troubleshooting is required.

Figure 2. Device Manager - USB-MODEVM Detected
3. If the device manager does not show both devices as seen in columns A, B, or C of Figure 2 and the orange LED (D2) is unlit, the problem most likely is due to an incorrect hardware setup and might show in the Device Manager as in Figure 3. If this is the case, ensure that the hardware is set as described in the Hardware Setup section of this document. Another possible scenario might arise if an incorrect driver was installed initially. In that case, that driver must be uninstalled by right-clicking the device in the device manager and selecting Uninstall.

Figure 3．Device Manager－Unknown Device
4．Disconnect the USB cable，and proceed to the next section．

3．2 Device Driver Setup

Follow the next steps to ensure that the USB－MODEVM device driver is installed correctly．
1．Install the corresponding TLV320AIC3xEVM－PDK software．
2．After a successful installation，the following files are present on the hard drive：
a．C：IWINDOWS\system32\driversINiViUsbK．sys
b．C：IWINDOWS linf IUSB－MODEVM＿WDM．inf
3．Connect a USB cable from the USB－MODEVM to the PC．
4．A Found New Hardware Wizard window appears．Select No，not this time and click Next＞．
5．Select the radio button shown in the left window in Figure 4，and click Next＞．After a few seconds，the right window in Figure 4 appears：

Figure 4．Found New Hardware Wizard
6．Click Finish and open the Device Manager．The USB－MODEVM driver is now installed as shown in Figure 5.

```
- 娄 NI-VISA USB Devices
    绾 USB-MODEVM
\dagger- 目 PCMCIA adapters
\dagger}\mathrm{ Ports (COM & LPT)
+ Processors
# Smart card readers
- Sound, video and game controllers
    O) Audio Codecs
    O. Legacy Audio Drivers
    O. Legacy Video Capture Devices
    O. Media Control Devices
    O SigmaTel C-Major Audio
    O. USB Audio Device
    O)Video Codecs
```

Figure 5．Device Manager－Successful Installation
7. If the USB-MODEVM is still shown in the Device Manager as in column B of Figure 2, right-click the USB-MODEVM entry, and select Update Driver. Follow steps 4 to 6.

4 References

1. TAS1020B, USB Streaming Controller data manual (SLES025)
2. TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide (SBAUT14)

Appendix A USB-MODEVM Schematic

The schematic diagram is provided as a reference.

USB Interface USB Interface	Daughtercard Interface Daughtercard Interface
MCLK	MCLK
BCLK	\bigcirc BCLK
LRCLK	3 LRCLK
I2SDIN	\rightarrow I2SDIN
I2SDOUT	3 I2SDOUT
MISO	$\checkmark \mathrm{MISO}$
MOSI	MOSI
डs	$\rangle \overline{\mathrm{s}}$
SCLK	SCLK
RESET	RESET
INT	INT
PWR_DWN	PWR_DWN
P3.3	P3.3
P3.4	P3.4
P3.5	P3.5
P1.0	P1.0
SDA	\square SDA
SCL	SCL
P1.1	P1.1
P1.2	P1.2
P1.3	$\square \mathrm{P} 1.3$

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: Microsoft, Windows are trademarks of Microsoft Corporation.
 $1^{2} \mathrm{C}$ is a trademark of Philips Electronics.

