

ABSTRACT

An open-load detection test can be implemented using headset-detection test of the TLV320DAC3100. This application note provides a summary of the headset-detection test with the TLV320DAC3100 EVM and how to use the headset-detection test to detect an open load.

1 Test for Detection of Headsets

Headset detection is normally used to determine if a headset has been inserted into the EVM. It can also determine the type of headset, either with or without a microphone. This detection is accomplished by observing the voltage on the MICDET input. See Figure 1 for schematic representation and Table 1 for threshold voltages.

Table 1. Voltage Threshold for Detection of Headsets

<table>
<thead>
<tr>
<th>REGISTER 67 BITS</th>
<th>REGISTER VALUE</th>
<th>DESCRIPTION</th>
<th>VOLTAGE THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6-D5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>0x80</td>
<td>No headset detected</td>
<td>MICDET > approx. 0.91 × MICBIAS</td>
</tr>
<tr>
<td>01</td>
<td>0xA0</td>
<td>Headset without microphone detected</td>
<td>MICDET < approx. 0.1 × MICBIAS</td>
</tr>
<tr>
<td>11</td>
<td>0xE0</td>
<td>Headset with microphone detected</td>
<td>Approx. 0.1 × MICBIAS < MICDET < approx. 0.9 × MICBIAS</td>
</tr>
</tbody>
</table>

(1) MICBIAS by default is powered to AVDD and can also be powered to 2.5 V, 2 V, or powered down.
(2) If MICBIAS is powered down, the voltage threshold is based on DVDD.

Figure 1. Test Layout for Detection of Open Loads
For the open-load test, the feature for headset detection makes a voltage measurement that can determine the continuity of the speaker circuit. The voltage on the MICDET pin is set by the divider consisting of R1, R2, R3, and the resistance of the speaker (see Figure 1). During an open circuit, the resistance of the speaker circuit is near infinity; therefore, the MICDET voltage is simply pulled to MICBIAS. During normal conditions, the resistance of the speaker circuit is near zero compared to the resistance of R1, R2, and R3, and thus the MICDET voltage is calculated according to formula. See Equation 1 for the calculation of MICDET.

\[
V_{MICDET} = \left(\frac{R_2 + R_3}{R_1 + R_2 + R_3} \right) V_{MICBIAS}
\]

\[
V_{MICDET} = \left(\frac{100 \, \text{k}\Omega + 100 \, \text{k}\Omega}{100 \, \text{k}\Omega + 100 \, \text{k}\Omega + 100 \, \text{k}\Omega} \right) 3.3 \, \text{V}
\]

\[
V_{MICDET} = \left(\frac{2}{3} \right) 3.3 \, \text{V}
\]

\[
V_{MICDET} = 2.2 \, \text{V}
\]

The detection feature must be specifically activated, because it is not enabled by default. To enable headset detection, see Section 5.5.5 in the data manual (SLAS671).

2 Test for Detection of Open Loads

The layout of the test for detection of open loads is as seen in Figure 1.

When a load is detected, MICDET is pulled below the 0.91 × MICBIAS threshold (≈ 2.2 V in this case), which allows for a headset to be detected. When the load is disconnected, MICDET is pulled to MICBIAS, and no headset is detected. See Figure 2 for an example. Figure 3 shows the register values provided when using the EVM GUI Command Buffer prompt.

![Figure 2. Voltage Flow of MICDET With and Without an Open Load](image-url)
The resistors between MICBIAS and MICDET to ground must be high, such as 100 kΩ, to reduce losses, limit the current, and ensure that the output is not being driven back into the input. The resistor from MICBIAS to ground can be any value, such as 10 kΩ, to complete the current path to ground.

The 220-µF capacitors are necessary to minimize dc bias of the detection circuit. These capacitors must be large in order to minimize any contribution to the series impedance of the speaker circuit.

The inductors, and specifically the 4.7-µF capacitors, act as output filters. Because the TLV320 family uses BD modulation, a capacitor (CBTL) is not needed between SPKP and SPKM as it usually is for AD modulation.

In Figure 1, the output filter (second-order Butterworth low-pass) is set to a cutoff frequency of 6 kHz with an 8-Ω load. See Equation 2 and Equation 3 for calculating the C and L values.

\[
C = \frac{1}{\omega_0 \times R_L \times \sqrt{2}}
\]

\[
C = \frac{1}{2\pi \times \left(\frac{R_L}{2} \right) \times \sqrt{2}}
\]

\[
C = \frac{1}{2\pi (6 \text{ kHz}) \times 4 \Omega \times \sqrt{2}}
\]

\[
C = 4.689 \mu F \approx 4.7 \mu F
\] (2)

* \(R_L \) becomes \(R_i / 2 \) to account for analysis of the differential mode. See Figure 4 for the equivalent circuit.
Further details regarding BD modulation and values for the inductors and capacitors can be found in: *Class-D LC Filter Design* (SLOA119).

3 Test Procedure for Detection of Open Loads

The following steps use the TLV320DAC3100 EVM and its corresponding GUI. A USB-to-mini USB cable is needed to connect the EVM to a computer or laptop.

3.1 Setup Considerations

To download the software, go to the TLV320DAC3120 EVM product folder under Related Products.

To install the GUI, first download the software. Then attach the EVM to the computer using the USB cable. Next, open the .exe file named *CodecControl* and choose *TLV320AIC3100EVM-U* when the *Select EVM* panel appears.

For hardware considerations, all of the jumpers on the EVM must be taken off the headers (W1, W2, W3), because the layout is manually pulling MICDET to MICBIAS. See Figure 5 for an example. Table 2 also lists the functionality of each header.
Table 2. Description of Headers

<table>
<thead>
<tr>
<th>HEADER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 (pins 1–2)</td>
<td>Analog volume control</td>
</tr>
<tr>
<td>W1 (pins 2–3)</td>
<td>Microphone detection</td>
</tr>
<tr>
<td>W2</td>
<td>Apply right-channel MICBIAS voltage to microphone connector</td>
</tr>
<tr>
<td>W3</td>
<td>Apply left-channel MICBIAS voltage to microphone connector</td>
</tr>
</tbody>
</table>

One can use pin 2 on header W1 to measure MICDET and R17 (on the back of the EVM) to measure MICBIAS.

3.2 Steps in the GUI for Detection of Open Loads

There are four steps when using the GUI to test for open loads, assuming the speaker is already connected to the EVM.

1. Enable headset detection (Page 0, Register 67, bit D7 should be set to 1).
2. Read the register (Register should read E0 or A0, as both detect a headset; see Table 1).
3. Disconnect the speaker by removing leads.
4. Read the register (Register should read 80).

3.2.1 Enable Headset Detection

Headset detection can be enabled through either Register Inspector or Command. It is not necessary to enable headset detection using both Register Inspector and Command. Once changes have been enabled using either process, the GUI automatically updates the information, which is reflected in the other.

NOTE: If MCLK is not used in the application, the internal oscillator must be enabled first before performing the following steps. To enable the internal oscillator, use the Register Inspector. Go to Page 3, Register 16, and change Bit 7 from 1 to 0.

To enable headset detection through Register Inspector, go to View → Register Inspector. Next, scroll down to Register 67 and click on the 0 in column 67 to change it to a 1. The number turns red when transitioning from one value to another to indicate the change. The advantage in using this process is ease of use.
To enable headset detection through Command, go to View → Command. Then in the command buffer, type `w 30 43 80` and click Run. `w` indicates write and 30, 43, and 80 indicate the device address, register (Register 67 in this instance), and data value, respectively, written in hex. The advantage in using this process is the ability to insert multiple manual instructions as desired.

See Figure 6 and Figure 7 to enable headset detection using Register Inspector and Command, respectively.

![Figure 6. Enabling Headset Detection Using Register Inspector](image-url)
3.2.2 Read Register

The easiest way to read a register value is through Command. In the text box, write `r 30 43 01`. `r` indicates read and 30 and 43 indicate the device address and register (Register 67 in this instance) once again. 01 indicates the number of bytes read from the register. Click on Execute and the data appears in the Read Data box. See Figure 8 for reading a register value from Command. Figure 3 shows the register values transitioning between detecting a speaker and an open load.
4 Other Considerations

There are two factors to take into consideration when using the headset-detection circuitry: the capacitors and the volume level of the device.

4.1 Capacitor Considerations

For capacitor considerations, see the 220-μF dc-blocking capacitors in Section 2. When picking capacitors, the larger the capacitor, the more efficiently dc bias is eliminated, and there is less chance for a false reading: false reading meaning the register reads that a speaker is connected when it is actually disconnected and vice versa. However, the charge and discharge times are also longer. This timing means that when the speaker is disconnected, it takes a longer period of time before MICDET reaches 0.91 × MICDET and is considered disconnected.

The same logic goes to smaller capacitors. Whereas smaller capacitors have faster charge and discharge times, and therefore detect a disconnected speaker more quickly, these capacitors also block dc bias less efficiently with a greater chance for false readings.

Based off the headset-detection circuitry and using a Mirage 5.1 Nanosat or equivalent speaker, the minimum capacitor value is 10-μF, though the capacitor value should be chosen based on the system and speakers used.

4.2 Volume Level Considerations

As the purpose of the capacitors is to block out dc bias, the ac signal will passes through the capacitors into the speakers. Therefore, some ac signal can also be seen on the MICDET pin. To ensure that the MICDET pin does not exceed absolute maximum (AVDD + 0.3 V, or 3.6 V in this case), the ac signal on the MICDET pin must be limited to 0.3 V_{\text{peak}} at the most.

To help limit the ac signal seen on the MICDET pin, either the Class-D Speaker Driver, Analog Attenuation, or both (see Figure 9) must be moderated so that neither of the two is at the highest setting. See Table 3 for a summary of Class-D Speaker Driver levels versus Analog Attenuation levels as to not exceed absolute maximum rating for MICDET.
Figure 9. Volume Level Section of EVM GUI

Table 3. Class-D Speaker Driver and Analog Attenuation Levels for MICDET

<table>
<thead>
<tr>
<th>Class-D Speaker Driver (dB)</th>
<th>Analog Attenuation (max) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>–10</td>
</tr>
<tr>
<td>24</td>
<td>–10</td>
</tr>
</tbody>
</table>

5 Summary

Open loads can be detected using the EVM GUI by first enabling headset detect, then reading register 67. Headset detection works by having MICDET pulled to MICBIAS. When a headset is inserted, MICDET drops to ground. The test for detection of open loads works in the same way by using the function for headset detection to indicate load connectivity.

Revision History

Changes from A Revision (March 2013) to B Revision

- Added REGISTER VALUE column to table ... 1
- Changed connector to cable in Section 3 ... 4
- Added note to Section 3.2.1 .. 5

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- **Audio**
 - www.ti.com/audio
- **Amplifiers**
 - amplifier.ti.com
- **Data Converters**
 - dataconverter.ti.com
- **DLP® Products**
 - www.dlp.com
- **DSP**
 - dsp.ti.com
- **Clocks and Timers**
 - www.ti.com/clocks
- **Interface**
 - interface.ti.com
- **Logic**
 - logic.ti.com
- **Power Mgmt**
 - power.ti.com
- **Microcontrollers**
 - microcontroller.ti.com
- **RFID**
 - www.ti-rfid.com
- **OMAP Applications Processors**
 - www.ti.com/omap
- **Wireless Connectivity**
 - www.ti.com/wirelessconnectivity

Applications

- **Automotive and Transportation**
 - www.ti.com/automotive
- **Communications and Telecom**
 - www.ti.com/communications
- **Computers and Peripherals**
 - www.ti.com/computers
- **Consumer Electronics**
 - www.ti.com/consumer-electronics
- **Energy and Lighting**
 - www.ti.com/energy
- **Industrial**
 - www.ti.com/industrial
- **Medical**
 - www.ti.com/medical
- **Security**
 - www.ti.com/security
- **Space, Avionics and Defense**
 - www.ti.com/space-avionics-defense
- **Video and Imaging**
 - www.ti.com/video
- **TI E2E Community**
 - e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated