ABSTRACT

Ultra-low power analog measurements are a common requirement in applications such as non-contact power measurement and wireless condition monitoring. Many of these systems are battery based and must achieve extended life while still providing continuous coverage. This application note describes how to utilize the low-power features of the analog-to-digital converter (ADC) with up to 16-bit precision peripheral found in the SimpleLink™ MSP432™ microcontrollers (MCUs) as well as best practices to achieve ultra-low-power performance.

The software described in this document can be downloaded from http://www.ti.com/lit/zip/slaa741.
1 Introduction

The precision ADC found in the MSP432P4xx devices is an extremely flexible 14-bit 1-Msps SAR ADC, supporting both high-performance and ultra-low-power modes. This application report focuses on the low-power feature of the precision ADC (see Figure 1) and some of the key low-power features of the MSP432 MCUs in a straightforward data acquisition and processing application.

Applications like wireless voltage monitoring for a year off a coin cell require the MSP432 MCU to periodically wake up from a deep sleep (700 nA, LPM3) and determine the RMS voltage of the differential waveform. The target goal for this application is an average current of 25 µA.

<table>
<thead>
<tr>
<th>Table 5-27. Precision ADC Power Supply and Input Range Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER</td>
</tr>
<tr>
<td>AVCC</td>
</tr>
<tr>
<td>AVCC</td>
</tr>
<tr>
<td>V(Ax)</td>
</tr>
<tr>
<td>VCM</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Precision ADC Low-Power Features
2 System-On-Chip (SOC) Peripherals

In addition to the precision ADC, several other peripherals make the MSP432P4xx SOC solution very versatile and especially good at providing low-power solutions. These peripheral include the memory, power management, clock system, and GPIO.

2.1 Memory

The flash and SRAM memories are configurable to support different levels of performance and, in the case of the SRAM specifically, banks can be turned off to conserve power.

2.1.1 Flash

The flash on the MSP432P4xx device has programmable wait states to support different CPU operating speeds. In this application, the maximum core frequency is 24 MHz and, therefore, the flash wait state is kept at level 0 for the entirety of the application. It is important to note that if the speed is going to exceed 24 MHz, the \(V_{core} \) needs to be incremented to level 1, and the flash wait state needs to be incremented to level 1 \(^{(1)}\). To execute instructions at frequencies above 24 MHz with 0 wait states, the SRAM code can be used for code execution.

2.1.2 SRAM

Executing code from SRAM provides both a performance and power advantage. In this application, the emphasis is on the power benefit.

Figure 2 is taken from the MSP432P401R data sheet and shows the reduction in power consumption when executing out of SRAM. Again, this application is using a frequency of 24 MHz from the digitally controlled oscillator (DCO), and from Figure 2, the power savings is over 600 \(\mu A \).

![Figure 2. Current Consumption in DC-DC Based Active Modes – Dhrystone 2.1 Program](image)

In addition to using the SRAM to execute code, unused banks of SRAM can be turned off when not in use. This is particularly helpful during the LPM3 mode and all controllable banks (bank 1 to bank 7) are turned off. Bank 0 is always enabled, and this is where global variables and the stack are preserved even during LPM3. The configuration of the SRAM is managed in the CCS linker command file, msp432p401r_LPMRAM.cmd. This is graphically depicted in Figure 3.

\(^{(1)}\) See the device-specific data sheet (Reference [1]) as read modes other than the normal read mode require different wait states.
Figure 3. SRAM Organization

Figure 3 also shows when the SRAM banks are active relative to the active, LPM0, and LPM3 modes of the microcontroller. This is done to preserve only the necessary data and provide the maximum power savings.

2.2 Power Management

Power management for this application involves keeping the voltage core at level 0 throughout the application, utilizing the DC-DC converter, disabling the Power Supply Supervisor (PSS) high-side supervisor, and enabling the forced LPM entry mode to ensure that the device enters the LPM3 mode.

By keeping the main clock (MCLK) frequency to a maximum of 24 MHz, the voltage core level does not need to be adjusted during the application, because the MCLK frequency is reduced to 3 MHz before entering LPM3. In order to take advantage of the power savings of the DC-DC during active mode, it is necessary to transition from DC-DC to LDO and back as the application transitions from active mode to LPM3 to LPM0 and back to active mode (2).

The PSS is simply disabled, because the functionality is not required for this application. The PSS consumes only 7 µA of current in full speed mode and can be configured into a low-power mode (200 nA) during the LPM3 modes, if needed.

The forced LPM entry mode is provided to override any clock requests and ensure that the device enters LPM3 state. The clock system is discussed in Section 2.3.

(2) Also see Reference 2 for a detailed description in the Power Mode Transitions section.
2.3 Clock System

This application utilizes two internal clocks, the DCO and the system oscillator (SYSOSC), as well as the external low-frequency crystal (LFXT).

The DCO toggles between 3 MHz and 24 MHz during the application. 24 MHz is the operating speed for the data capture and processing, while the 3-MHz operation is used to bridge between active mode, which uses the DC-DC converter, and LPM3 mode, which uses the LDO.

The LFXT sources the real-time clock (RTC) peripheral to provide the periodic (1 second) wake up from LPM3.

2.4 GPIO

In order to provide the sub-µA LPM3 current described in the data sheet, it is very important to properly configure the GPIO. As described in Reference 1, the GPIO structure includes a Schmidt-trigger input which can switch or even oscillate if left in a high-impedance state. Good practice for configuration of unused port pins is provided in Reference 2. In general, all of the unused I/Os are placed in an active low state.

3 Analog Configuration

The internal reference (REF_A), timer (Timer_A), and DMA are used to support the precision ADC peripheral in this application. The precision ADC is placed in a differential configuration and provides a 12-bit result in unipolar representation.

3.1 Timer_A

The Timer_A peripheral is used to generate a PWM waveform to trigger the ADC conversion time as well as define the setup and hold time before the conversion. The sample frequency is variable while the sample and hold time is statically set to 19 timer clock cycles. The Timer_A is sourced from SMCLK, which runs at 12 MHz (DCO/2), resulting in a sample-hold time in the range of approximately 1.58 to 1.38 µs (see Figure 4). The conversion time is a function of the precision ADC configuration and is discussed in Section 3.3.

![Figure 4. Timer_A Sample-Hold Definition and Sampling Frequency](image-url)

3.2 REF_A

The internal reference can be configured to supply one of three voltages to the ADC. This application uses the 1.2-V reference. It is important to note that the reference is turned off during LPM3 mode to reduce power consumption, and a delay is inserted in the application to provide sufficient time for the reference and ADC wakeup.
3.3 Precision ADC

The precision ADC provides both a high-performance mode and a low-power mode. The low-power mode, which is used here, limits the resolution to 12 bits and a maximum sampling rate of 200 ksp. The 12-bit resolution therefore dictates a conversion time of 14 ADC clocks in addition to the additional clock cycles required for the memory transfer (to the conversion memory space) and the synchronization with the timer.

The precision ADC is configured to measure a single differential channel; however, the sequence mode is defined as a sequence of channels where the single channel is written to each memory location, ADC14MEM0 to ADC14MEM31. Using this technique enables the DMA to have a more efficient interaction with the ADC memory space.

3.4 DMA

The DMA uses the scatter-gather configuration to establish tasks for moving the data content between the ADC and SRAM as well as wake up the CPU to perform intermediate processing for an RMS calculation on the dataset currently being collected. This process involves utilizing one of the GPIOs as an interrupt source, and the DMA writes to that source as a signal to wake up the CPU and process the current set of data. Figure 5 shows the DMA task flow.
Tasks 0-31
- Move 32 samples
 - from ADCMEM0-ADCMEM31
 - to SRAM[0-1023]
- $32 \times 32 = 1K$ samples

Task 32
- Wake up CPU to process first 1K Samples

CPU Task 0
- Process first 1k sample set
- Return to LPM0

Tasks 33-64
- Move 32 samples
 - from ADCMEM0-ADCMEM31
 - to SRAM[1024-2047]
- $32 \times 32 = 1K$ samples

Task 65
- Wake up CPU to process second 1K Samples

CPU Task 1
- Process second 1k sample set
- Return to LPM0

Tasks 66-97
- Move 32 samples
 - from ADCMEM0-ADCMEM31
 - to SRAM[2048-3071]
- $32 \times 32 = 1K$ samples

Task 98
- Wake up CPU to process third 1K Samples

CPU Task 2
- Process third 1k sample set
- Return to LPM0

Tasks 99-130
- Move 32 samples
 - from ADCMEM0-ADCMEM31
 - to SRAM[2048-3071]
- $32 \times 32 = 1K$ samples

Task 131
- Disable ADC Enable Convert

Task 132
- Turn off Reference

Task 134
- Stop Timer

Task 135
- Wake up CPU to process fourth 1K Samples
 and remaining processing for 4K sample set

CPU Task 3
- Process fourth 1k sample set
- Complete process of all four sets
- Return to LPM3

Figure 5. DMA Task Flow
4 Test Setup

The example code provided with this application report contains all the system variables for it to compile with the SimpleLink MSP432 SDK. The only update that may be required is for the CMSIS installation path. Figure 6 shows how to update the path for CMSIS. Make sure that the check box for "Show system variables" is selected.

![Figure 6. Updating CMSIS_PATH System Variable](image-url)
5 Test Results

Using a DC Power analyzer, the flow of the program can be seen in the current profile. Figure 7 and Figure 8 show the overall periodic waveform and a focus on the time when the measurements are made and processed. Table 1 lists the calculations for the average current.

Figure 7. 1-Second Period

Figure 8. Data Acquisition and Capture
6 Conclusion

The low-power mode of the precision ADC peripheral in conjunction with the low-power features of the MSP432 MCU enable a wide range of low-power applications. This example shows how to achieve 1 year of battery life using a 220-mAh battery while continuously measuring once a second. At a slower rate of 2 seconds and 50 ksps, a longer battery life of 1.8 years could be achieved. These techniques can easily scale to any low-power MSP432 application.

7 References

1. MSP432P401R, MSP432P401M SimpleLink™ Mixed-Signal Microcontrollers
3. Using the CMSIS DSP Library in Code Composer Studio for TM4C MCUs
Appendix A. CMSIS DSP Library

The CMSIS DSP Library is utilized for some of the math functions to calculate the RMS of the measured waveform. This appendix, in addition to Reference 3, explains how to create and include the library in CCS.

Appendix B. Current Profiles

Figure 9. LPM3 Current, 740 nA

Figure 10. LPM0 and AM, 200 ksp, 4K Samples, 1.37 mA
Figure 11. LPM0 and AM, 100 ksp, 2K Samples, 1.06 mA

Figure 12. LPM0 and AM, 50 ksp, 1K Samples, 904 µA
NOTE: A simple counter is added to the example to extend the LPM3 period to 2 seconds. The waveform is the time and associated current profile to service the interrupt.

Figure 13. WDT Interrupt to Extend Interval to 2 Seconds
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>Changes from June 30, 2017 to October 19, 2017</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed the name of the ADC module from ADC14 to precision ADC throughout document</td>
<td>1</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated