ABSTRACT

The DAC38RF8x family of devices comes equipped with multiple test modes to assist users in verifying systems in rapid prototyping situations. This application report covers two of the available tests, the pseudorandom binary-sequence test and JESD204B short pattern test, in detail using the TI DAC38RF8xEVM and TSW14J56EVM capture card.
Introduction to PRBS Test

A pseudorandom binary sequence (PRBS) is a stream of binary information often used in testing high-speed data-transmission signal integrity. Pseudorandom binary sequences are composed of an equal distribution of 0s and 1s and only repeat themselves after \(2^k - 1\) cycles, where \(k\) is the order of the PRBS test. The PRBS test replicates the worst-case data scenarios where the current received bit is unrelated to previous bits. For more information on pseudorandom binary sequences, refer to the Advantest document, *DSP-Based Testing - Fundamentals 50, PRBS (Pseudo Random Binary Sequence)* (Okawara 2013).

The DAC38RF8x supports three different PRBS testing options: PRBS7, PRBS23, and PRBS 31. In this test mode, the PRBS pattern is supplied to the DAC input, typically through an FPGA, and the pattern is compared with the internally generated pattern of the DAC. If the received pattern matches the generated pattern, the test will pass and confirm good signal integrity at the DAC input. Otherwise a flag in one of the DAC registers is set to notify the user of a possible issue.

The following sections outline the required steps to implement the PRBS test using the DAC38RF8x EVM by using the TSW14J56 capture card and corresponding TI GUI software. To run the test without using the TI EVMs and GUIs, configure the DAC to the desired operating state and perform the register writes provided in Section 1.5 to enable the PRBS test mode.

1.1 Required Hardware

This test procedure requires the following lab equipment:

- DAC38RF8xEVM RevE board
- TSW14J56 RevD board
- 5-V DC power supplies
- Signal generator
- Oscilloscope

1.2 Required Software

This test procedure requires the following software:

- HSDC Pro Version 4.8 or higher
- DAC38RF8x EVM GUI
1.3 Hardware Setup

Follow these steps (see Figure 1) to set up the hardware:

Step 1. Connect the TSW14J56 FMC interface connector (J4 of TSW14J56) to DAC38RF8x FMC interface connector (J20 of DAC38RF8x EVM).

Step 2. Connect a USB 2.0 Type A to Mini-B cable from the PC to DAC38RF8x EVM USB Mini-B port (J16).

Step 3. Connect a USB 3.0 Type A to Type B cable from the PC to TSW14J56 RevD USB 3.0 B port (J9).

Step 4. Connect a 5-V power supply to the DAC38RF8x EVM board using J21.

Step 5. Connect a 5-V power supply to the TSW14J56 board using J11.

Step 6. Turn on the TSW14J56 board by moving switch 6 to the ON position.

Step 7. Connect the signal-generator output to LMKCLKIN (J4) of the DAC38RF8x EVM board.
 • Configure the signal generator to output a frequency of 368.64 MHz with an amplitude of 10 dBm.
 • Ensure that JP10 is removed from the board to enable internal clocking.

Step 8. Attach an oscilloscope probe to the alarm pin of DAC38RF8x EVM board (TP9).
1.4 Configuring the DAC38RF8x

This procedure describes how to configure the DAC into the LMF = 841 mode with internal clocking. If a different configuration is needed, follow a similar procedure and simply vary the values in step 3 and step 4.

Step 1. Launch the DAC38RF8x EVM GUI and select the Quick Start tab (see Figure 2).

Step 2. Reset the board by clicking the Not in RESET button and then clicking the button again, after the button changes, to bring the board back out of reset. Click the LOAD DEFAULT button to load the default values into the registers.

Step 3. Under the DAC MODE section, set
- The # of DACs field to Dual DAC
- The # of IQ pairs per DAC to 1 IQ pair
- The # of SerDes lanes per DAC field to 4 lanes
- The Desired Interpolation field to 12x

Step 4. In the On-Chip PLL section check the PLL Enable box. Set the M field to 6, the N field to 1, and the multiplier to 368.64. The DAC Clock Frequency box should automatically change to 8847.36 MHz. Click the CONFIGURE DAC button. After this configuration is complete, click the PLL AUTO TUNE button. After this configuration is complete, click the Reset DAC JESD Core & SYSREF TRIGGER button.

Figure 2. DAC38RF8x EVM GUI Quick Start Tab

Step 5. Select the DAC38RF8x tab and navigate to the Clocking sub-tab (see Figure 3). The box labeled PLL LF Voltage should be populated with a value from 2 to 6. If this value is correct, the configuration and PLL tuning were performed correctly. Otherwise, verify that the contents of the Quick Start tab are correct and repeat the previous steps.
Step 6. Select the Alarm Monitoring sub-tab (see Figure 4). In the General Alarm and Test section, select Alarm Output in the ALARM Pin drop-down menu. Select the ALARM Pin Polarity field to be either Active High or Active Low. Active high causes the alarm pin voltage to be set high if a PRBS error occurs.

Step 7. Select the SERDES and Lane Configuration sub-tab (see Figure 5). In the Align drop-down menu select Disabled. Next, in the SERDES Test Pattern drop-down menu select the desired PRBS test. In the DTEST drop-down menu select TESTFAIL. In the DTEST Lane Select drop-down menu, select the lane to be tested.
Figure 5. DAC38RF8x EVM GUI SERDES and Lane Configuration Tab

Step 8. Select the JESD Block sub-tab (see Figure 6). Ensure that the Comma Align EN boxes are not checked.

Figure 6. DAC38RF8x EVM GUI JESD Block Tab

1.5 PRBS Register Writes for Custom Setup

If the user is implementing the test without using the TI EVMs or GUI software the following register writes must be made in place of the previous steps to achieve the correct test setup. The registers in the DAC are arranged according to page number and addresses. The page number indicates to which portion of the DAC the registers are associated. The page number is indicated in the low-level view by the first digit in the address field.
Table 1. Register Writes for Custom Setup

<table>
<thead>
<tr>
<th>Page</th>
<th>Address</th>
<th>Bit</th>
<th>Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>14, 13</td>
<td>0x00</td>
<td>Enable alarm output active high</td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td>14</td>
<td>0x3E</td>
<td>Align disable</td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td>11:8</td>
<td>0x1B</td>
<td>Set DTEST to TESTFAIL</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>0</td>
<td>0x4F</td>
<td>Uncheck Comma Align En</td>
</tr>
<tr>
<td>5.</td>
<td>2</td>
<td>0</td>
<td>0x4F</td>
<td>Uncheck Comma Align En</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>15:12</td>
<td>0x3D</td>
<td>To Select PRBS7</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>15:12</td>
<td>0x3D</td>
<td>To Select PRBS23</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>15:12</td>
<td>0x3D</td>
<td>To Select PRBS31</td>
</tr>
</tbody>
</table>

NOTE: Users should only perform one of the last three register writes which corresponds to the desired PRBS test. After performing the register writes, send the pattern to the DAC through the FPGA connection.

1.6 TSW14J56 SETUP for PRBS Tests

When the DAC has been configured properly, the PRBS pattern is ready to be sent. Launch the HSDC Pro application and navigate to the Quick Start tab. A window pops up asking the user to select a device. Select the TSW14J56 RevD board and click the OK button (see Figure 7).

![Figure 7. HSDC Pro Select-Board Menu](image)

A box pops up indicating that no firmware is connected. Click the OK button and switch to the DAC tab in the HSDC Pro application by using the tabs located at the top of the window (see Figure 8).

![Figure 8. HSDC Pro DAC Tab](image)

Open the drop-down menu in the top left corner by clicking the green arrow beside the Select DAC box. Select PRBS_DAC38RF8x_LMF_841_RevD. Click Yes in the window that pops up to update the firmware.
When the firmware is correct, the PRBS pattern is ready to be loaded. Under the Instrument Options menu, select SERDES Test Options. In the window that pops up, select the transmitter tab at the top. The DAC38RF8x EVM supports PRBS7, PRBS23, and PRBS31. Select the desired PRBS test and click the Apply button.
1.7 **PRBS Test Results**

The PRBS test should now be running. Monitor the alarm pin using the oscilloscope for failures. If no alarms are detected after a few seconds, the PRBS test is passing. Different PRBS tests can be performed by selecting the desired test in the *SERDES and Lane Configuration* tab of the DAC38RF8x EVM GUI and selecting the corresponding test in the HSDC Pro GUI SerDes Test Options. Additionally, the other lanes can be tested by selecting the desired lane from the *DTEST Lane Select* drop down in the *SERDES and Lane Configuration* tab.

2 **Introduction to JESD204B Short Pattern Test**

The DAC38RF8x also comes equipped with software to verify short pattern tests using the JESD204B lanes. The JESD204B short pattern test is a quick and easy way for users to ensure that lane mapping between the FPGA and DAC38RF8X is correct. The following section describes the test setup and procedure for the JESD204B short pattern test using the TI EVMs and GUIs. To perform this test on a different board or without the TI GUI software, configure the DAC into the desired state making sure to include the register writes in Section 2.5.

2.1 **Required Hardware**

This test procedure requires the following pieces of lab equipment:

- DAC38RFxxEVM REV E board
- TSW14J56 REV D board
- 5-V DC power supplies
- Signal generator

2.2 **Required Software**

This test procedure requires the following software:

- HSDC Pro Version 4.59 or higher
- DAC38RFx EVM GUI

2.3 **Hardware Setup**

Follow these steps to set up the hardware:

Step 1. Connect the TSW14J56 FMC interface connector (J4 of TSW14J56) to DAC38RFxx FMC interface connector (J20 of DAC38RFxx EVM).

Step 2. Connect the USB 2.0 Type A to Mini-B cable from the PC to DAC38RFxx EVM USB Mini-B port (J16)

Step 3. Connect the USB 3.0 Type A to Type B cable from the PC to TSW14J56 Rev D USB 3.0 B port (J9)

Step 4. Connect a 5-V power supply to the DAC38RFxx EVM board using J21.

Step 5. Connect a 5-V power supply to the TSW14J56 board using J11.

Step 6. Turn on the TSW14J56 board by moving switch 6 to the ON position.

Step 7. Configure the signal generator to output 5898.24 MHz signal at 16 dBm, and apply signal to the DACCLKP SMA connector (J1).

Step 8. Install Jumper J10 to enable external clocking.

Step 9. Connect the spectrum analyzer input to IOUATA (J6).
2.4 Configuring the DAC38RF8x

The procedure images that follow show how to configure the DAC into the LMF = 4421 mode with external clocking. If a different configuration is needed, follow a similar procedure and vary the values in the DAC MODE box accordingly.

Step 1. Launch the DAC38RF8x GUI and select the Quick Start tab. In the Quick Start tab, toggle the DAC RESETB pin and click the LOAD DEFAULT button.

Step 2. After the default registers have been loaded, configure the DAC to the desired operating mode. The following figures show the setup for the 4421 configuration, but the steps will be the same for all configurations.

![Figure 11. DAC38RF8x GUI (4421 External Clocking Configuration)](image)

Step 3. Select the DAC38RF8x tab. In the Mixer section, check the Mixer enable box for Path AB. In the NCO section, check the NCO enable box for Path AB and set the NCO frequency to 1000-MHz. Click the UPDATE NCO button.
2.5 Register Writes for Custom Setup

To achieve this DAC configuration without the DAC38RF8x EVM GUI, perform the register writes shown in Table 2.

Table 2. DAC38RF8x Register Writes

<table>
<thead>
<tr>
<th>Page</th>
<th>Address</th>
<th>Bit</th>
<th>Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>0xC</td>
<td>9,5</td>
<td>1, 1 Enable mixer and NCO</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>0x1E</td>
<td>15:0</td>
<td>0xC7C1 Update NCO frequency (AB)</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>0x1F</td>
<td>15:0</td>
<td>0x1C71 Update NCO frequency (AB)</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>0x120</td>
<td>15:0</td>
<td>0x2B67 Update NCO frequency (AB)</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>0x121</td>
<td>15:0</td>
<td>0x0000 Update NCO frequency (CD)</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>0x122</td>
<td>15:0</td>
<td>0x0000 Update NCO frequency (CD)</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>0x123</td>
<td>15:0</td>
<td>0x0000 Update NCO frequency (CD)</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>0x1C</td>
<td>15:0</td>
<td>0x0000 Update NCO phase offset (AB)</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>0x1D</td>
<td>15:0</td>
<td>0x0000 Update NCO phase offset (CD)</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>0x28</td>
<td>1</td>
<td>1 SIF Sync</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>0x28</td>
<td>1</td>
<td>0 SIF Sync</td>
</tr>
<tr>
<td>12.</td>
<td>2</td>
<td>0x28</td>
<td>1</td>
<td>1 SIF Sync</td>
</tr>
<tr>
<td>13.</td>
<td>2</td>
<td>0x28</td>
<td>1</td>
<td>0 SIF Sync</td>
</tr>
</tbody>
</table>

2.6 TSW14J56 SETUP for JESD204B Short Pattern Test

After the DAC38RF8x EVM GUI has been properly configured, the next step is to send the pattern to the DAC. Follow these steps to configure the HSDC pro to send the pattern to the DAC:

Step 1. Launch the HSDC Pro application.
Step 2. A window will pop up asking the user to select a device. Select the TSW14J56 RevD board and click the OK button (see Figure 13).
Step 3. A box pops up indicating that no firmware is connected. Click the OK button.

Step 4. Switch to the DAC tab in the HSDC Pro application by using the tabs located at the top of the window.

Step 5. Open the drop-down menu in the top left corner by clicking the green arrow beside the Select DAC box. Select the .ini file corresponding to the configuration of the DAC. Click Yes in the window that pops up to update the firmware.

Step 6. Change the data rate at the top of the HSDC pro application to the appropriate data rate for the previously selected configuration. The data rate is determined by taking the DAC clock frequency and dividing it by the interpolation rate. In the bottom left corner of the HSDC Pro application, set the tone number to 1 and tone center to 10-MHz (see Figure 16). In the Tone selection drop-down menu, select Complex and click the Create Tones button. Click the Send
button.

Figure 16. HSDC Pro Tone Creation

Step 7. The spectrum analyzer should now show a tone at 1010-MHz. If the tone is present, the DAC has been configured correctly and is ready to execute the JESD204B short pattern test.

2.7 Short Pattern Test Procedure

To run the short pattern test, the user must first create the pattern file. The pattern file is a CSV file containing the information that is sent to the DAC during the test, and is different for each configuration. Users can look up their corresponding pattern in Table 3. The given patterns are in 2's complement hexadecimal format.

Table 3. JESD204B Short Test Patterns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>I0</th>
<th>Q0</th>
<th>I1</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>82121</td>
<td>7CB8, F431</td>
<td>6DA9, E520</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>42111</td>
<td>7CB8</td>
<td>F431</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22210</td>
<td>7CB8</td>
<td>F431</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12410</td>
<td>7CB8</td>
<td>F431</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>44210</td>
<td>7CB8</td>
<td>F431</td>
<td>6DA9</td>
<td>E520</td>
</tr>
<tr>
<td>24410</td>
<td>7CB8</td>
<td>F431</td>
<td>6DA9</td>
<td>E520</td>
</tr>
<tr>
<td>41121</td>
<td>7CB8, F431</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>81180</td>
<td>7C00, B800, F400, 3100, 6D00, A900, E500, 2000</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24310</td>
<td>7CB0</td>
<td>F431</td>
<td>6DA0</td>
<td>E520</td>
</tr>
<tr>
<td>41380</td>
<td>7CB0, F430, 6DA0, E520, F870, E960, DA50, CB40</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The generated file should repeat the pattern for 256 lines. Figure 17 shows an example of the beginning of the 4421 pattern file. Because the 4421 pattern contains data in the I0, Q0, I1, and Q1 sections, the pattern file for this mode is four columns wide. Also, because each section contains only one value, that value is simply repeated for the entirety of the column. For sections containing more than one value, the pattern in the corresponding column cycles through the values instead of just repeating the one value.
In the HSDC Pro application, click the *Load External Pattern File* button and load in the pattern file. Click the *Send* button.

The next step is to enable the short pattern test in the DAC. In the DAC38RF8x GUI, select the *Low Level View* tab. Scroll down in the list of registers to the DAC38RF8x section and then select register 0x10C. Write a 1 to bit 12 of this register to enable the short pattern test.

![Figure 17. Example Short Test Pattern File](image)

![Figure 18. DAC38RF8x EVM GUI Low Level View Tab Short Test Enable Register](image)
2.8 JESD204B Short Pattern Test Results

To read the alarm pin, scroll down and select register 0x16C. In the Write Data box, type the value 0000 and click the Write Register button. This write clears any alarms that may have been inadvertently triggered in the setup process. Next click the Read Register button. If the value in the register remains a zero, the test is passing and the configuration is correct. If the value changes to a 1, the alarm signal has been detected and the user's setup could have issues.

![Figure 19. DAC38RF8x EVM GUI Low Level View Tab Short Test Alarm Register](image)

NOTE: The register values in the GUI do not automatically update and can only be checked by using the Read Register button. Also the short pattern test alarm must be cleared manually between each reading using the write register tool. Disabling the short pattern test through the short test enable register does not clear the alarm pin.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated