ABSTRACT

The open-loop gain (A_{OL}) of an operational amplifier is one of the most important specifications. Proper understanding of A_{OL} at DC and over frequency is crucial for the understanding of closed-loop gain, bandwidth, and stability analysis.

This application note provides an in-depth understanding of the PGA900 A_{OL} magnitude and phase over frequency. The effects of temperature, power supply voltage, and semiconductor process variation on the A_{OL} curve were observed. The variation over these parameters was used to develop a worst-case model that can be used to create robust designs.

Contents

1 PGA900 A_{OL} ... 2
2 Temperature Effects on PGA900 A_{OL} 4
3 Output Load Effects on PGA900 A_{OL} 6
4 Power Supply Voltage Effects on PGA900 A_{OL} 8
5 Process Variation Effects on PGA900 A_{OL} 10
6 Worst-Case PGA900 A_{OL} Variations 12
7 Conclusion .. 14
8 References ... 14

List of Figures

1 PGA900 Typical $A_{OL}(s)$ and Phase Response ($\phi(s)$) over Frequency ... 2
2 PGA900 $A_{OL}(s)$ vs Temperature .. 4
3 PGA900 $A_{OL,DC}$ vs Temperature 4
4 PGA900 Unity-Gain Frequency vs Temperature 5
5 PGA900 $A_{OL}(s)$ vs Output Load ... 6
6 PGA900 $A_{OL,DC}$ vs Output Load 6
7 PGA900 Unity-Gain Frequency vs Output Load 7
8 PGA900 $A_{OL}(s)$ vs Power Supply Voltage 8
9 PGA900 $A_{OL,DC}$ vs Power Supply 8
10 PGA900 Unity Gain Frequency vs Power Supply 9
11 PGA900 $A_{OL}(s)$ vs Process Variation 10
12 PGA900 $A_{OL,DC}$ Change vs Process Variation 10
13 PGA900 Unity Gain Frequency vs Process Variation 10
14 PGA900 Worst-Case $A_{OL}(s)$ vs Frequency 12
15 PGA900 Worst-Case $A_{OL,DC}$... 12
16 PGA900 Worst-Case Unity Gain Frequency 13
17 PGA900 Worst-Case Phase Margin 13
Figure 1 shows the typical frequency behavior of the PGA900 $A_{OL}(s)$ magnitude ($A_{OL}(s)$) and phase ($\phi(s)$).

The frequency where $A_{OL}(s) = 1$ V/V or 0 dB, is marked as f_u in Figure 1; f_u is defined in Equation 1.

$$f_u = 1.8 \text{ MHz} \quad (1)$$

$A_{OL\ DC}$ is the DC change in output voltage (V_{OUT}) versus the change in input offset voltage (V_{OS}) as defined in Equation 2.

$$A_{OL\ DC} = 20 \times \log_{10} \frac{V_{\text{OUT}}}{V_{\text{OS}}}$$

$$A_{OL\ DC} = 195 \text{ dB} \quad (2)$$

The frequency behavior of $A_{OL}(s)$ is largely defined by the low-frequency dominant pole located at frequency ω_1 or f_1. At the dominant pole frequency, $A_{OL}(s)$ has decreased 3 dB from $A_{OL\ DC}$ and the phase has shifted by -45°.

$$f_1 = 0.37 \text{ mHz} \quad (3)$$

A single-pole Laplace approximation to the A_{OL} curve can be defined based on f_1, as shown in Equation 4.

$$A_{OL}(s) = \frac{A_{OL\ DC}}{1 + \frac{s}{\omega_1}}$$

where

- $s = j\omega$
- $\omega_1 = 2\pi f_1 \quad (4)$

The complete frequency behavior of the PGA900 A_{OL} curve is additionally shaped by a midfrequency pole-zero pair, f_{XP1} and f_{XZ1}, an additional zero at f_{XZ2} and a high-frequency triple-pole, f_{XP2}. These frequencies are listed below for the PGA900. The location of these poles and zero in the $A_{OL}(s)$ transfer function determines the unity-gain crossover frequency (f_u) of 1.8 MHz.

$$f_{XP1} = 142 \text{ kHz} \quad (5)$$

$$f_{XZ1} = 274 \text{ kHz} \quad (6)$$

$$f_{XZ2} = 1.24 \text{ MHz} \quad (7)$$

$$f_{XP2} = 4.88 \text{ MHz} \quad (8)$$

The complete analytical expression of $A_{OL}(s)$ and $\phi(s)$ are shown in Equation 9 and Equation 10.
To create a robust design, it is important to understand how $A_{OL}(s)$ changes as the system operating conditions change. System operating conditions that affect the performance of the $A_{OL}(s)$ curve include: temperature, output load, power supply voltage, and process variation.
2 Temperature Effects on PGA900 A_{OL}

The PGA900 is specified over an extended operating temperature range of –40ºC to 150ºC. The operating temperature affects both the DC and the frequency behavior of the PGA900 $A_{\text{OL}}(s)$ curve as shown in Figure 2.

![Figure 2. PGA900 $A_{\text{OL}}(s)$ vs Temperature](image)

Figure 2 shows the temperature effects on $A_{\text{OL,DC}}$. Over the operating temperature range, $A_{\text{OL,DC}}$ can vary from 214 to 149 dB. The 65-dB change in $A_{\text{OL,DC}}$ results in changes in the accuracy of the closed-loop gain at low-frequencies.

![Figure 3. PGA900 $A_{\text{OL,DC}}$ vs Temperature](image)

Figure 3 shows the variation of the unity-gain frequency, f_u, over the operating temperature range. Over the operating temperature of the PGA900, f_u can vary from 1.26 to 2.75 MHz.
Figure 4. PGA900 Unity-Gain Frequency vs Temperature
3 Output Load Effects on PGA900 AOL

The PGA900 is specified to drive output loads with up to 2.5 mA of source and sink current. The operating output current, or better output load, affects both the DC and the frequency behavior of the PGA900 $A_{\text{OL}}(s)$ curve as shown in Figure 5.

![Figure 5. PGA900 $A_{\text{OL}}(s)$ vs Output Load](image)

Figure 5 shows the output load effects on $A_{\text{OL,DC}}$. Over the operating output load range, $A_{\text{OL,DC}}$ can vary from 195 to 141 dB.

![Figure 6. PGA900 $A_{\text{OL,DC}}$ vs Output Load](image)

Figure 6 shows the variation of the unity-gain frequency, f_u, over the operating output load range. Over the operating output load of the PGA900, f_u can vary from 0.48 to 1.8 MHz.
Figure 7. PGA900 Unity-Gain Frequency vs Output Load

Lower values of load resistance cause a greater impact on A_{OL} due to the interaction of the open-loop output impedance and the output load.
4 Power Supply Voltage Effects on PGA900 A_{OL}

The PGA900 can operate over a wide range of the power supply voltages from 3.3 to 30 V. The power supply voltage has minimal impact on $A_{\text{OL}}(s)$ as shown in Figure 8.

![Figure 8. PGA900 $A_{\text{OL}}(s)$ vs Power Supply Voltage](image1)

$A_{\text{OL,DC}}$ changes by less than 1 dB from 195.9 to 196.8 dB over the full power-supply voltage range, as shown in Figure 9.

![Figure 9. PGA900 $A_{\text{OL,DC}}$ vs Power Supply](image2)

Over the full power-supply voltage range, f_u only changes from 1.7 to 1.8 MHz as shown in Figure 10.
Figure 10. PGA900 Unity Gain Frequency vs Power Supply
5 Process Variation Effects on PGA900 A\textsubscript{OL}

During manufacturing, semiconductor process parameters are subjected to variations that result in performance differences in the final integrated circuits. Process corners represent the worst-case variations of these semiconductor parameters. The effects of the manufacturing process corners on the PGA900 A\textsubscript{OL}(s) are displayed in Figure 11.

![Figure 11. PGA900 A\textsubscript{OL}(s) vs Process Variation](image)

Over the process corners, A\textsubscript{OL_DC} changes from 188.9 dB to 196.2 dB as shown in Figure 12.

![Figure 12. PGA900 A\textsubscript{OL_DC} Change vs Process Variation](image)

Process variations result in changes of f_u from 1.66 to 1.9 MHz as shown in Figure 13.
Figure 13. PGA900 Unity Gain Frequency vs Process Variation
6 Worst-Case PGA900 A_{OL} Variations

The variations in the PGA900 $A_{OL}(s)$ due to temperature, power-supply voltage, and process variations for a 200-kΩ load resistor can be combined together to understand the worst-case variations that may occur in an application. The operating temperature results in the largest variations of $A_{OL}(s)$, while the power-supply voltage results in the smallest variations. Observe the worst-case PGA900 $A_{OL}(s)$ in Figure 14.

Figure 14. PGA900 Worst-Case $A_{OL}(s)$ vs Frequency

Over all of the possible system variations, $A_{OL,DC}$ can change from 135 to 213 dB as shown in Figure 15.

Figure 15. PGA900 Worst-Case $A_{OL,DC}$

As shown in Figure 16, the system variations result in a worst-case change in f_u from 1.2 to 3 MHz. This variation can significantly impact the stability analysis of the PGA900 and must be taken into account during the design process.
The corresponding phase responses for the curves shown in Figure 16 have been plotted in Figure 17. The phase margin is the measure of the phase at \(f_u \) for each of the curves. The worst-case system variations cause the phase margin to change from the nominal value of 77.6° up to 79° and down to 56°.
Conclusion

The PGA900 A_{OL} curve is shaped by a low-frequency dominant pole, a midfrequency pole-zero pair, an additional zero, and a high-frequency triple pole. The complete PGA900 A_{OL} curve is shown in Figure 1 and defined in Equation 1.

The typical magnitude and phase response of the A_{OL} curve changes due to variations in the system operating temperature, output load, power-supply voltage, and semiconductor processing. The changes in A_{OL} due to these varying application factors were presented in this note over the full operating range of the PGA900. The results from the individual parameters were used to determine the worst-case changes that may occur in a harsh industrial application. Table 1 lists the results of the individual application factors along with the worst-case analysis. System designers can use this information to create a robust design over the expected application operating conditions. The A_{OL} characteristics and typical variations shown in this application note are valid for any semiconductor operational amplifier on a CMOS process.

Table 1. Summary of PGA900 A_{OL} and f_u Shifts

<table>
<thead>
<tr>
<th>Application Factor</th>
<th>Conditions</th>
<th>A_{OL} MIN (dB)</th>
<th>A_{OL} MAX (dB)</th>
<th>f_u MIN (MHz)</th>
<th>f_u MAX (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>–45°C to 150°C</td>
<td>149</td>
<td>214</td>
<td>1.26</td>
<td>2.75</td>
</tr>
<tr>
<td>Output load</td>
<td>470 Ω to 200 kΩ</td>
<td>140</td>
<td>195</td>
<td>0.48</td>
<td>1.8</td>
</tr>
<tr>
<td>Power supply</td>
<td>3.3 to 30 V</td>
<td>195.9</td>
<td>196.8</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Process variation</td>
<td>Weak-strong</td>
<td>188.9</td>
<td>196.2</td>
<td>1.66</td>
<td>1.9</td>
</tr>
<tr>
<td>Worst case</td>
<td>Power supply, temperature, process</td>
<td>135</td>
<td>213</td>
<td>1.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

8 References

7. Miroslav Oljaca, Henry Surtihadi, *Operational amplifier gain stability, Part 2: DC gain-error analysis* SLYT374
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to additional restrictions.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2015, Texas Instruments Incorporated