THS8135/6 PCB Layout Guidelines

- The choice of single GND plane or split DGND/AGND plane will depend on board content and parts placement. If a single GND plane is used, keep digital components and return currents away from the analog section. If separate planes are used, keep analog power, decoupling, and traces over the AGND plane and digital traces over the DGND plane.
- Provide adequate power supply filtering, especially the 3.3V AVDD supply. Linear regulators are preferred but not a requirement if switching regulators are adequately filtered and properly placed on the PCB.
- Place 0.1µF power decoupling capacitors close to each power pin.
- Place the FSADJ resistor and the COMP and VREF capacitors as close as possible to their pins.
- Keep traces as short and delay matched as possible to maximize signal integrity and timing margin. Trace length tolerances will depend on operating frequencies and system setup/hold time margins.
- Series termination resistors are recommended on all digital traces to maximize signal integrity and electro magnetic compliance (EMC). These termination resistors should be placed as close as possible to the digital source. Values required will depend on PCB trace impedance and source impedance of the bus drivers.
- All analog input traces should have a minimum of 10x (x means trace width) clearance between each other and other adjacent traces to minimize any potential crosstalk.
- Place the THS8135/6 as close as possible to the video/graphics output connector and maintain matched trace lengths. 75-ohm trace impedance is preferred for the analog output traces.
- All high speed signals should be routed over a solid GND/Power plane and not routed over power/GND splits. Route signals over associated power plane where possible.
- Minimize vias in the high speed data and clock traces. Clock and bus daisy-chaining should be avoided for best signal integrity.
- Using GND fills on the top and bottom of the board will improve isolation between signals and also help maximize EMC.
- Avoid routing traces under the thermal pad. Solder the thermal pad to a thermal land on the PCB and via to the internal GND plane. The THS8135/6 thermal pad is connected internally to AVSS. When split GND planes are used, connect the thermal pad to the analog GND plane.
- ESD protection on the analog outputs is recommended.
- Output filtering requirements depend on whether video or graphics formats are being supported. A ferrite bead may be used in the analog output path for high frequency noise reduction, but excessive filtering of RGB graphics outputs should be avoided.
- See Figure 1 for recommended GND split when split planes are used.
Figure 1. Recommended Split Between Ground Planes
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements in connection with such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements in connection with such use.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements in connection with such use.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements in connection with such use.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Amplifiers</th>
<th>Data Converters</th>
<th>DLP® Products</th>
<th>DSP</th>
<th>Clocks and Timers</th>
<th>Interface</th>
<th>Logic</th>
<th>Power Mgmt</th>
<th>Microcontrollers</th>
<th>RFID</th>
<th>RF/IF and ZigBee® Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Audio</td>
<td>Automotive</td>
<td>Communications and Telecom</td>
<td>Computers and Peripherals</td>
<td>Consumer Electronics</td>
<td>Energy</td>
<td>Industrial</td>
<td>Medical</td>
<td>Security</td>
<td>Space, Avionics & Defense</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated