Introduction to M-LVDS (TIA/EIA-899)

Michael Peffers

ABSTRACT

LVDS (TIA/EIA-644) devices are ideal for designs that demand high speed, low power, and electromagnetic compatibility. LVDS devices provide a wide range of solutions for point-to-point and multidrop data transmission. The Multipoint LVDS (M-LVDS) standard brings all of the LVDS benefits to the multipoint data transmission world. This application report summarizes the M-LVDS standard, its unique multipoint provisions, and Texas Instruments M-LVDS family of devices.

Contents

1 Introduction .................................................................................................................. 2  
2 Topologies and Technologies .................................................................................. 2  
2.1 Topologies ........................................................................................................ 2  
2.2 Technologies ....................................................................................................... 3  
3 The M-LVDS Standard ............................................................................................. 5  
3.1 Driver Specifications ............................................................................................ 5  
3.2 Receiver Specifications ....................................................................................... 7  
4 Texas Instruments M-LVDS Portfolio ..................................................................... 9  
5 Summary ................................................................................................................... 10  

List of Figures

1 Point-to-Point Simplex Configuration ........................................................................ 2  
2 Multidrop Configuration .......................................................................................... 2  
3 Multipoint Configuration .......................................................................................... 3  
4 TIA/EIA-644 Driver Test Load .................................................................................. 4  
5 TIA/EIA-644-A Driver Full-Load Test Circuit ......................................................... 5  
6 TIA/EIA-899 Driver Test Circuit ............................................................................. 5  
7 Driver Short-Circuit Test Circuit ............................................................................. 6  
8 Receiver Differential Input Voltage Threshold Requirements ................................ 8  
9 Wired-OR Signaling Using M-LVDS Drivers and Receivers ................................... 8  
10 MLVD200 Series Footprints ................................................................................... 10  

List of Tables

1 A Comparison of LVDS Specifications ....................................................................... 3  
2 SN65MLVD200 Series Parts .................................................................................... 9
1 Introduction

Can LVDS be adapted to operate in a multipoint system? Can I get more noise margin in my LVDS system? Are there any options for a higher speed, lower power version of 485? The answer to these questions is yes, as is shown in this application report.

Texas Instruments offers a wide variety of single and multichannel M-LVDS devices that support high-speed, low-power, and true multipoint operation. M-LVDS devices give designers the ability to realize the benefits of LVDS technology while operating in a multipoint environment. This application report describes the M-LVDS standard and also highlights Texas Instruments wide breadth of M-LVDS solutions.

2 Topologies and Technologies

TIA/EIA-899 (Electrical Characteristics of Multipoint-Low-Voltage Differential Signaling (M-LVDS)) was developed to respond to a demand for a general-purpose, high-speed, balanced interface standard for multipoint applications. A common question is often raised concerning the applicability of LVDS devices (those complying with TIA/EIA-644) to different architectural problems. What is the difference between a point-to-point, multidrop, or multipoint system; and which devices can be applied to each system? The following paragraphs look at various topological architectures, and the applicability of different standards to each topology.

2.1 Topologies

2.1.1 Point-to-Point

A point-to-point interface consists of a single driver and a single receiver connected by transmission media. The point-to-point connection provides the optimum configuration from a signaling quality viewpoint. Mainline stubs and other discontinuities are avoided, and the highest possible signaling rate can be expected. The point-to-point topology supports simplex communication where the data transmission is unidirectional. Figure 1 shows a differential point-to-point simplex configuration.

![Figure 1. Point-to-Point Simplex Configuration](image)

2.1.2 Multidrop

A second common interconnection configuration is multidrop. In a multidrop system a single driver is again used, but now multiple receivers are connected to the main transmission line. Where line termination is necessary, a single termination is located at the far end of the line from the transmitter. Like point-to-point, a multidrop connection provides unidirectional transmission. Figure 2 shows a differential multidrop interconnection.

![Figure 2. Multidrop Configuration](image)
2.1.3 Multipoint

The final architecture to be discussed is multipoint. In a multipoint configuration many transmitters and many receivers can be interconnected on a single transmission line. The key difference here is the presence of two or more drivers. Such a situation creates contention issues that need not be addressed with point-to-point or multidrop systems. Multipoint operation allows for bidirectional, half-duplex communication over a single balanced media pair. To support the location of the various drivers throughout the transmission line, double termination of the transmission line is now necessary. Figure 3 shows a multipoint configuration.

![Figure 3. Multipoint Configuration](image)

2.2 Technologies

2.2.1 TIA/EIA-644 (LVDS)

Discrete LVDS devices generally comply with the 1996 ANSI standard TIA/EIA-644, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits. TIA/EIA-644 was conceived to provide a general-purpose electrical-layer specification for drivers and receivers connected in a point-to-point interface. Table 1 highlights some of the important LVDS specifications for drivers and receivers. LVDS drivers are specified when driving a simple 100-Ω resistive load. Figure 4 shows the driver test circuit included in the 644 standard. Receivers require ±100 mV thresholds and operation over ±1 V of ground potential difference. Table 1 shows that receivers also have a 20 µA input leakage current requirement. Since LVDS was originally specified as a point-to-point interface, this 20 µA leakage was negligible, and was therefore ignored when specifying the driver output characteristics. LVDS drivers were specified to work for point-to-point applications, but could not be assumed to work in a multidrop system.

<table>
<thead>
<tr>
<th>Table 1. A Comparison of LVDS Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER</td>
</tr>
<tr>
<td>DRIVER CHARACTERISTICS</td>
</tr>
<tr>
<td>Offset voltage: Vos (max)</td>
</tr>
<tr>
<td>Offset voltage: Vos (min)</td>
</tr>
<tr>
<td>Differential output voltage: Vod (max)</td>
</tr>
<tr>
<td>Differential output voltage: Vod(min)</td>
</tr>
<tr>
<td>Short circuit current: Ios</td>
</tr>
<tr>
<td>Differential voltage change: ΔVod</td>
</tr>
<tr>
<td>Transition time: tr/tf(min)</td>
</tr>
<tr>
<td>RECEIVER CHARACTERISTICS</td>
</tr>
<tr>
<td>Ground potential difference: Vgpd</td>
</tr>
<tr>
<td>Input leakage current: Iin</td>
</tr>
<tr>
<td>Differential input leakage current: Iid</td>
</tr>
<tr>
<td>Input voltage range: Vin</td>
</tr>
<tr>
<td>Input threshold: Vth</td>
</tr>
<tr>
<td>NS: Not specified</td>
</tr>
</tbody>
</table>
2.2.2 TIA/EIA-644-A (LVDS, REV A)

As discussed earlier, a multidrop application has one driver communicating with multiple receivers. The 644 receiver input leakage requirement of 20 µA has a small effect on the driver output voltage when only one receiver is connected, but this effect becomes more pronounced as the driver is loaded with additional receivers. An update to LVDS, designated TIA/EIA-644-A, was developed and released in 2001 to standardize the driver requirements for LVDS devices being used in a multidrop configuration. Devices compliant to 644-A can be easily identified by the full load test required for the driver output. Figure 5 shows this 644-A test circuit. As with 644, 644-A receivers have a 20 µA input leakage requirement, which implies a 120 kΩ input resistance. The 3.74 kΩ resistors in Figure 5 represent the worst-case parallel combination of thirty-two 644-A receivers. The V<sub>TEST</sub> power supply in Figure 5 represents the possible range of bias voltages that 644-A receivers may present to the bus, when connected in a system that operates over a ±1 V ground noise environment.

![Figure 4. TIA/EIA-644 Driver Test Load](image)

Table 1 includes significant 644-A electrical specifications alongside the 644 values. The availability of TIA/EIA-644-A compliant devices allows users to confidently choose multidrop drivers when the need arises.

2.2.3 Multipoint Variants of LVDS

Multipoint operation introduces a new set of problems. First, the main transmission line needs to be doubly terminated. Whereas LVDS drivers are specified for driving a 100-Ω load, a multipoint line, using 100-Ω transmission media appears as 50-Ω (or even lower depending on the capacitive loading of multiple bus transceivers). TI introduced the LVDM family of drivers in 1998, compliant to the 644 LVDS standard, with the exception of a doubling of the output current. The LVDM family does not include many of the provisions necessary when more than two drivers are expected on a multipoint bus, but provides an attractive solution when a point-to-point half-duplex (i.e., a single transceiver communicating with a second transceiver) multipoint design is needed. In a point-to-point multipoint system intermediate stubs are absent on the bus allowing the use of fast edge-rate drivers and enabling half-duplex transmissions at rates of 300-600 Mbps. LVDM devices also find use in simple point-to-point architectures when a designer is looking for additional noise margin at the receiver.

National Semiconductor, now part of TI, introduced the BLVDS family of devices that were targeted at heavily loaded backplanes where card loading and spacing lowers the impedance of the transmission line as much as 50%. This loading effect, and the need to terminate the bus at both ends for multipoint applications, required a change to the driver’s output. National boosted the output current three fold to the 10-12 mA range. A 100 Ohm transmission line, loaded down to 54 Ohms by the cards, would then need to be terminated at both ends with 54 Ohms. Thus a driver would see the two terminations in parallel and only need to drive a minimal load of 27 ohms with 12 mA to generate 325 mV swing. See References

While LVDM and BLVDS devices provide the necessary features to address many problems, true multipoint capabilities (to include edge rate control, contention provisions, wired-Or signaling, etc.) are needed when the design involves numerous drivers and receivers connected to a bus. M-LVDS devices support these needs. Table 1 also lists M-LVDS parameters with the other standards that have already been discussed. As shown in the table, the offset voltage for M-LVDS drivers is allowed to vary over a much wider range than allowed by the previous standards discussed. This increased offset voltage range allows for the presence of multiple drivers on the bus. Table 1 shows that M-LVDS receivers are also required to operate over ±1 V of ground noise. Another noteworthy point concerns the M-LVDS specification for differential output voltage. While 644 and 644-A were specified with a 100-Ω load, the M-LVDS driver requirement is for a 50-Ω load, as would be expected for a doubly terminated multipoint driver.
3 The M-LVDS Standard

3.1 Driver Specifications

3.1.1 Driver Offset and Differential Voltages

As mentioned above, the M-LVDS standard includes many unique features to address issues of concern when operating with multipoint communication. Figure 6 shows the test circuit for M-LVDS drivers. The similarity to the 644-A test circuit is obvious. The standard allows up to thirty-two M-LVDS circuits (driver, receiver, or transceiver) to be connected to the common transmission media. The familiar 20 µA input leakage requirement is specified for disabled drivers, disabled transceivers, or receivers. The 3.32 kΩ load resistors represent the parallel combination of any mix of thirty-two M-LVDS circuits. The test circuit power supply now ranges from –1 V to 3.4 V to accommodate the possible range of voltages that can be presented to the bus by compliant circuits. But why is this voltage range now greater than the 0 to 2.4 V test voltage seen with 644-A? As we see in the following paragraphs, the answer lies in the common-mode signal components and their defined voltage limits.

The common-mode voltage on a multipoint bus is the sum of the driver output and ground offset voltages. 644 and 644-A drivers are required to have an output offset voltage of 1.2 V ± 0.175 V. Since there are periods when there are no active drivers on a multipoint bus segment, the M-LVDS driver cannot be used to establish the worst-case common-mode operating point of the circuit. During this idle-bus state, the common-mode voltage is bounded by the open-circuit voltages of the attached components. In the case of TIA/EIA-899 compliant devices, this voltage is 0 V to 2.4 V and is borrowed from its 644 predecessor. Addition of a one-volt ground-noise offset added to this range gives the common-mode voltage range requirements for M-LVDS circuits of –1 V to 3.4 V as shown in Figure 6.
Figure 6 shows that the driver shunt load is ~ 50 Ω, the parallel combination of two 100-Ω ideal transmission lines, and the common-mode load is 3.32 kΩ. M-LVDS drivers provide a typical differential output signal of 565 mV into a 50-Ω test load. This means that M-LVDS drivers deliver approximately 11.3 mA when a 50-Ω load represents the actual application. M-LVDS drivers therefore, may deliver more signal to receivers in a multipoint architecture than their LVDS counterparts deliver in a point-to-point or multidrop type configuration (typical differential voltage for 644 and 644-A drivers is 350 mV). This increased, relative, drive strength is incorporated to address anticipated multipoint designs involving closely spaced nodes. While a point-to-point multipoint or widely distributed multipoint system can be expected to look like 50 Ω to a driver, closely spaced nodes can easily result in capacitive loading that drops the effective load seen by the driver to 30 Ω. The 11.3 mA output ensures that M-LVDS drivers still provide greater than 300 mV under these conditions.

3.1.2 Driver Short Circuit

A second M-LVDS driver provision to address contention deals with the maximum short circuit current delivered to the multipoint bus. M-LVDS drivers are required to deliver less than 43 mA of current when driving into a short circuit as shown in Figure 7.

The power supply included in the figure is the one already seen, its range of voltage chosen to represent the maximum bus voltage due to drivers located throughout the multipoint line, and separated by up to ±1 V of ground shift. The 43-mA short circuit requirement ensures that the maximum output from any driver does not develop more than 0 to 2.4 V differential on the bus. A 50-Ω line impedance, coupled with this 43-mA current, ensures that the max differential bus voltage stays below 2.4 V in magnitude.

3.1.3 Driver Transition Time

A final M-LVDS driver provision to address multipoint operation concerns transition time. As was shown in Table 1, 644 and 644-A allow driver transition times as fast as 260 ps. Faster transition times lead to higher signaling rates, which is one of the key benefits of LVDS. Using the generally accepted equation below it is seen that the 644 and 644-A allow for signaling rates of up to 1.923 Gbps:

\[
\text{Max\_signaling\_rate} = \frac{0.5}{\text{tr}_f}\]

One of the drawbacks of fast transition times is that careful attention needs to be placed on the design of the interconnect to minimize impedance mismatches from stubs, connectors, and other parasitic connections to the line. General guidelines suggest that mainline stubs be kept as short as possible, with specific guidelines recommending that the propagation delay of a stub be less than 30% of the signal transition time. With 260 ps transition times, this means stubs should be less than 80 ps long, or approximately 0.5 inch of FR-4 PCB material.

In a multipoint system, stubs off the mainline may be the norm, rather than the exception. In order to allow for this, while also observing the 30% propagation delay recommendation, the M-LVDS standard specifies a minimum transition time of 1 ns. This 1 ns means that the maximum signaling rate expected with M-LVDS devices is 500 Mbps, but stubs can now be almost 2 inches long without violating the 30% rule.
3.2 Receiver Specifications

3.2.1 Input Impedance and Leakage Current

In a multipoint environment, active drivers provide a differential signal to receivers, as well as disabled (three-stated), inactive, drivers and transceivers. From a loading point-of-view, inactive drivers and transceivers can effect the transmitted signal in the same way that receivers can. In order to bound the impedance seen by an active driver, the M-LVDS standard specifies a common leakage requirement for disabled devices and receivers. Similar to the LVDS standard, a 20 µA leakage current is permitted over a 0 to 2.4 V input range. Since M-LVDS devices are required to operate over a wider input range than LVDS devices, additional leakage requirements are included for the wider voltage inputs, but all devices can be characterized simply as 120 kΩ, minimum, input impedance. The M-LVDS driver full-load test circuit seen earlier (Figure 6) ensures that at least thirty two compliant M-LVDS circuits can be interconnected, and comply with the electrical specifications of the standard.

3.2.2 Bus Pin Voltage

Disabled devices and M-LVDS receivers are also required to constrain their bus pin voltage. Compliant circuits are required to maintain bus-pin voltages between 0 and 2.4 V. Limiting bus pin voltage in this way ensures the bus operating voltages stay within those allowed by standard. Inactive devices and receivers are prohibited from employing simple failsafe pullup circuitry that can charge the line to more than 2.4 V or less than 0 V and result in operation outside the minimum common-mode operating voltages.

3.2.3 Input Thresholds and Type-1/Type-2 Receivers

As has been mentioned already, M-LVDS receivers are required to operate with differential inputs up to 2.4 V in magnitude. Supporting this 2.4 V input ensures that proper operation is available even under conditions of thirty-two drivers operating simultaneously. M-LVDS receivers are also required to correctly detect the input state when as little as 50 mV of signal is available. This 50-mV requirement is half the 100 mV specified for LVDS receivers. This reduction in input threshold, along with the increase in driver output (565 mV for M-LVDS vs 350 mV for LVDS drivers), provides improved noise margins when using M-LVDS devices. As in the LVDS specification, the M-LVDS threshold requirement is a steady state specification. System designers should plan on providing at least 50 mV of overdrive signal at the input to the receivers to provide for at-speed signaling.

The LVDS standard does not specify any requirements for receiver failsafe. Compliant receivers were simply specified to correctly detect the input state when at least 100 mV was available and receiver response to less than 100 mV. The M-LVDS standard has specified two classes of receivers to bring standardization to failsafe implementation. The standard uses the nomenclature Type-1 and Type-2 to refer to these two receiver classes.

Figure 8 shows the required response, vs input differential voltage, for Type-1 and Type-2 receivers. Type-1 receivers are similar to LVDS receivers, with improved thresholds. Type-2 receivers have an offset threshold. Bus input signals that are less than +50 mV are defined to be a low state. Greater than +150 mV results in a high state. Type-1 receivers are expected to be used for maximum speed signals such as data or clock lines. Type-2 receivers are useful for lower speed applications such as control lines.
Type-2 receivers allow Wired-Or signaling with M-LVDS devices. Figure 9 shows devices connected in a Wired-Or architecture. The enable lines on the drivers are used to disable/enable the drivers. When enabled, drivers output a high state to the bus. Type-2 receivers detect a high state when one or more bus drivers are active. The receiver detects a low state when all drivers are disabled. Such a configuration might be used when sharing control lines to arbitrate for access to accompanying data lines.

Figure 8. Receiver Differential Input Voltage Threshold Requirements

Figure 9. Wired-OR Signaling Using M-LVDS Drivers and Receivers
Texas Instruments M-LVDS Portfolio

Texas Instruments M-LVDS portfolio provides devices covering signal rates from 100-250. Table 2 summarizes the portfolio, the data sheets for each of these parts can be found online at www.ti.com interface.

<table>
<thead>
<tr>
<th>Table 2. SN65MLVD200 Series Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>SN65MLVD3</td>
</tr>
<tr>
<td>SN65MLVD2</td>
</tr>
<tr>
<td>SN65MLVD048</td>
</tr>
<tr>
<td>SN65MLVD202A</td>
</tr>
<tr>
<td>SN65MLVD205A</td>
</tr>
<tr>
<td>SN65MLVD204A</td>
</tr>
<tr>
<td>SN65MLVD200A</td>
</tr>
<tr>
<td>SN65MLVD203</td>
</tr>
<tr>
<td>SN65MLVD206</td>
</tr>
<tr>
<td>SN65MLVD201</td>
</tr>
<tr>
<td>DS91M124</td>
</tr>
<tr>
<td>DS91M125</td>
</tr>
<tr>
<td>SN65MLVD040</td>
</tr>
<tr>
<td>SN65MLVD047A</td>
</tr>
<tr>
<td>SN65MLVD128</td>
</tr>
<tr>
<td>SN65MLVD129</td>
</tr>
<tr>
<td>SN65MLVD080</td>
</tr>
<tr>
<td>SN65MLVD082</td>
</tr>
</tbody>
</table>

Each of the family parts is briefly discussed below.

The ‘200A, ‘202A, ‘204A and ‘205A devices provide 100 Mbps signaling rates with driver transition times limited within 1.5 ns and 3.0 ns. Since the signaling rate is a function of transition time, the maximum signaling rate is defined as 50% of the transition time. However, transition time degradation between the driver and receiver will occur and reduce the maximum achievable signaling rate. The following equation is generally accepted for calculating the signaling rate:

\[
driver\_signaling\_rate = \frac{0.3}{tr,tf}
\]

Using this equation with the 3.0 ns max transition time results in the 100 Mbps driver specification. The 1.5 ns minimum transition time helps bound the length of stubs off the main line, which in this case would be almost 3 inches long.

The ‘200A and ‘204A are footprint compatible with the SN75176 bidirectional bus transceiver while the ‘202A and ‘205A provide footprint replacements for devices complying with the SN75ALS180 differential driver/receiver pair (SN75176 and SN75ALS180 footprints are shown in Figure 10). The ‘176 is an industry standard RS-485 footprint that allows the driver and receiver to be enabled independently, thereby allowing simultaneous talking and listening at a single node. Half duplex communication is also possible with the topology of the ‘176 footprint. Full duplex communication is available with the ‘180, an industry standard RS-422/RS-485 driver/receiver pair, because of the separate driver and receiver bus lines. The ‘200A and ‘202A provide Type-1 receivers with the 100 Mbps driver circuits, while the ‘204A and ‘205A include Type-2 receivers.
The ‘201A and ‘203A devices are 200 Mbps circuits with driver transition times limited to 1 ns and 1.5 ns. Since the 1 ns lower limit is shorter than the 1.5 nS lower limit of the 100 Mbps devices, the allowable stub off the main bus line is reduced to 2 inches.

Figure 10. MLVD200 Series Footprints

5 Summary

The M-LVDS standard provides designers with the high speed and low power benefits of LVDS and allows designers the flexibility to implement these features in a multipoint data transmission application. Texas Instruments brings a vast M-LVDS portfolio to the market that incorporates a wide variety of single and multichannel devices to aid designers in their multipoint designs. Please visit www.ti.com/interface for more information on TI’s M-LVDS portfolio and www.e2e.ti.com for technical support.

References

*The Many Flavors of LVDS; SNLA184*
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio www.ti.com/audio
Amplifiers amplifier.ti.com
Data Converters dataconverter.ti.com
DLP® Products www.dlp.com
DSP dsp.ti.com
Clocks and Timers www.ti.com/clocks
Interface interface.ti.com
Logic logic.ti.com
Power Mgmt power.ti.com
Microcontrollers microcontroller.ti.com
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation www.ti.com/automotive
Communications and Telecom www.ti.com/communications
Computers and Peripherals www.ti.com/computers
Consumer Electronics www.ti.com/consumer-apps
Energy and Lighting www.ti.com/energy
Industrial www.ti.com/industrial
Medical www.ti.com/medical
Security www.ti.com/security
Space, Avionics and Defense www.ti.com/space-avionics-defense
Video and Imaging www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated