Isolate your CAN systems without compromising on performance or space

Neel Seshan, Product Marketing Engineer, Isolation, Interface Group

Introduction: Isolated CAN

CAN interface has been a very popular serial communication standard in the industry due to its excellent prioritization and arbitration capabilities. In systems with different voltage domains, isolation is typically used to protect the low voltage side from the high voltage side in case of any faults. Isolation also breaks any ground loops allowing only the desired signals to be transmitted, thereby improving signal quality.

Isolated CAN is used for communication with the microcontroller in a wide range of applications such as solar inverters, circuit breakers, motor drives, PLC communication modules, telecom rectifiers, elevators, HVACs and EV charging infrastructures.

Isolated CAN can be broadly categorized into two types:

- **Basic isolation:** In some applications like elevators and HVACs, CAN signaling is used between boards for communication and the CAN lines are not subjected to high voltage differences as a part of the normal operation. In such cases, basic isolated CAN would suffice from isolation perspective. Figure 1 shows an example of an elevator where the communication between the calling button operating panel and the communications board is achieved through isolated CAN.

- **Reinforced isolation:** For solar inverter applications, the working voltage needs are higher and the electrical safety standard would have to be met by the isolator and hence reinforced isolation would be required. An example of isolated CAN used between the control module on the hot side and communication board of a computer or human-machine interface (HMI) on the cold side is shown in Figure 2.

Performance Considerations

- **Stand-off voltage or DC Bus fault protection voltage:** This voltage denotes the maximum voltage that can be applied to the CANH and CANL without damaging the device. The probability of the supply short to the CANH/CANL lines depends on the routing of the CANH/CANL signals relative to the high voltage supply lines – if all the signal and supply wiring is in the same harness, then higher stand-off voltage is recommended.

- **Data-rate:** Classical CAN data-rates are limited to 1Mbps. But newer CAN Flexible Data-rate (FD) transceivers are designed for data-rates up to 5Mbps, thereby enhancing timing margin and to allow for higher data-rates in long and highly-loaded networks. For more information, refer to the CAN FD blog.

- **Size:** With space constrained applications, discrete implementation of an isolator and CAN transceiver may not be feasible. Integration of isolation and CAN in a single package alleviates this concern.

- **Common mode transient immunity (CMTI):** CMTI is defined as the maximum rate of change of the common mode voltage on one side of the isolation without affecting the other side. It is
measured in dv/dt and higher the CMTI, higher is the protection from common mode swings on one side to the other.

- **Common mode voltage range**: This voltage determines the variation in the common mode that can be tolerated by the CAN device without causing errors in the data. Higher the common mode range in noisy environments allows for error-free communication. With integrated isolation, the common mode voltage is not as critical as the non-isolated case.

New isolated CAN

The ISO1042 is latest EMC optimized isolated CAN transceiver with 70V stand-off and CAN FD. This device combines the high performance of the TCAN1042 core with the robust ISO7721 isolation in a single package to provide galvanically isolated CAN transceiver that meets the specifications of the ISO11898-2 (2016) standard.

Isolation performance

Table 1 shows the comparison of the ISO1042 isolation ratings with the other isolated CAN devices available in the market.

Table 1. Isolation Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ISO1042</th>
<th>Competitor A</th>
<th>Competitor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working voltage (V<sub>ncs</sub>)</td>
<td>1000</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>Isolation voltage (V<sub>res</sub>)</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Surge test voltage (V<sub>st</sub>)</td>
<td>10000</td>
<td>10000</td>
<td>6000</td>
</tr>
<tr>
<td>Minimum CMTI (kV/μs)</td>
<td>85</td>
<td>25</td>
<td>45</td>
</tr>
</tbody>
</table>

ISO1042 uses SiO2 capacitive isolation where the dielectric material SiO₂ is moisture and temperature resistant. This provides the highest working voltage in the industry, ensuring higher margin and longer lifetimes for these devices. With 10kV_{PK} surge rating, the ISO1042 device meets the reinforced isolation standard. The higher CMTI spec of the ISO1042 provides higher immunity against noise perturbations on either side of the isolator, thereby maintaining signal integrity.

CAN performance

Table 2 lists the CAN performance of the various isolated CAN devices.

Table 2. CAN Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ISO1042</th>
<th>Competitor A</th>
<th>Competitor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN FD support</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Data-rate (Mbps)</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Bus Protection Voltage (V)</td>
<td>±70</td>
<td>±36</td>
<td>±58</td>
</tr>
<tr>
<td>Common Mode Voltage Range (V)</td>
<td>±30</td>
<td>Not specified</td>
<td>±25</td>
</tr>
<tr>
<td>VCC1 Range (V)</td>
<td>1.71 to 5.5</td>
<td>3 to 5</td>
<td>3 to 5.25</td>
</tr>
<tr>
<td>VCC2 Range (V)</td>
<td>4.5 to 5.5</td>
<td>4.75 to 5.25</td>
<td>4.8 to 5.3</td>
</tr>
</tbody>
</table>

The ISO1042 supports CAN FD up to 5Mbps in addition to the classical CAN data-rates of 1Mbps, thereby providing increased data payload by almost 8x when compared to classical CAN. The highest bus protection voltage provides large margin for this device as compared to other devices to withstand mis-wiring of the cables or shorts to the power supply. In addition, the high common mode range allows the device to be operative in a noisy system. The ISO1042 logic levels of 1.71V to 5.5V allows connections to the MCU directly without any level shifters. Finally the secondary side supply has 10% tolerance easing the requirements on the LDO used for isolated power supply.

Size considerations: Package

The ISO1042 is available in 2 packages as shown in Figure 3. The 16 pin SOIC (DW) is the industry standard isolated CAN package while the 8 pin SOIC (DWV) is a much smaller package that reduces the board space by half when compared to the other solutions available today. Both these packages provide 8mm creepage and clearance, making them suitable for basic and reinforced applications.

Conclusion

The ISO1042 device is a new isolated CAN device that has superior isolation and CAN performance to meet the needs of the industrial and automotive applications. Robust isolation coupled with high stand-off voltage and increased speeds enables efficient communication in noisy environments. Small package allows further reduction of board space in addition to reduced components due to integration of isolation and CAN with protection features.

Table 3. Alternative Device Recommendations

<table>
<thead>
<tr>
<th>Device</th>
<th>Optimized Parameters</th>
<th>Performance Trade-Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO1050</td>
<td>Isolated 5 V CAN Transceiver</td>
<td>Basic isolation, 1Mbps</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products [http://www.ti.com/sc/docs/stdterms.htm], evaluation modules, and samples [http://www.ti.com/sc/docs/sampterms.htm].

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated