THS3001 SPICE Model Performance

Jim Karki

ABSTRACT

This application report outlines the SPICE model of the THS3001 high-speed monolithic operational amplifier. General information about the model file structure, performance comparison, model listing, and a brief comment about symbols are included. The listing can be copied and pasted into an ASCII editor, or it can be downloaded by visiting the THS3001 product folder at http://www.ti.com/sc/docs/products/analog/THS3001.html.

Contents

1 Introduction ... 3
2 File Structure .. 3
3 Performance ... 3
4 Schematic and Subcircuit Listing .. 12
5 About Building a Symbol .. 15

List of Figures

1 Output Voltage (pk) vs Temperature 4
2 Output Voltage (pk) vs Temperature 4
3 Supply Current vs Temperature ... 4
4 Supply Current vs Temperature ... 4
5 Bias Current vs Temperature ... 4
6 Bias Current vs Temperature ... 4
7 Input Offset Voltage vs Temperature 5
8 Input Offset Voltage vs Temperature 5
9 Common-Mode Rejection Ratio vs Frequency 5
10 Common-Mode Rejection Ratio vs Frequency 5
11 Power Supply Rejection Ratio vs Frequency 6
12 Power Supply Rejection Ratio vs Frequency 6
13 Equivalent Input Voltage Noise vs Frequency 6
14 Equivalent Input Current Noise vs Frequency 6
15 Slew Rate vs Output Voltage (pp) 7
16 Slew Rate vs Output Voltage (pp) 7
17 2nd Harmonic vs Frequency .. 7
18 2nd Harmonic vs Frequency .. 7
19 3rd Harmonic vs Frequency .. 8
20 3rd Harmonic vs Frequency .. 8
List of Tables

1 Subcircuit Node to Symbol Pin Summary ... 15
1 Introduction

SPICE modeling has become commonplace today, especially with the advent of affordable PCs with more computing power than main frames of a few years ago.

A big concern in SPICE modeling is the accuracy of the models. Without a good model, simulation results are little more than verification of rudimentary circuit operation. The Boyle operational amplifier (op amp) model introduced during the mid '70s came from the need for a model that did not use a lot of computing resources, and gave reasonable results for the μA741. In the years since, people have enhanced the Boyle model to add more accuracy.

Today, full-transistor models simulate with speed and accuracy on modest home systems. The goal, when creating the SPICE model of the THS3001 high-speed monolithic operational amplifier, is to provide a model that will accurately simulate the actual device in a circuit. The model is derived from the full-transistor model used internally by TI design. Simplifications are made to speed simulation time, and various performance parameters are adjusted to match the model to measured device performance.

2 File Structure

The THS3001 SPICE model file, THS3001.lib, is written in ASCII file format and is compatible with a wide variety of computing platforms. The model is written in subcircuit format and has been tested with MicroSim® PSpice® release 8 and OrCAD® PSpice® version 9. It should be compatible with most SPICE2- and SPICE3-based simulation programs.

The THS3001.lib file contains the subcircuit definition for the THS3001. The model begins with a .SUBCKT statement and ends with a .ENDS statement.

3 Performance

Typical performance parameters are modeled, and normal part-to-part variations experienced in real life cannot be expected. At frequencies above a few hundred MHz, performance becomes increasingly dependent on parasitic devices associated with the circuit, and modeling suffers. So, even though the model is very accurate, always verify circuit performance with lab testing. An EVM is available upon request.

The following graphs compare simulation results to measured device data. In all graphs, the simulation results are dashed lines and the measured data are solid lines. Device performance is measured using the THS3001 EVM, or is taken from the data sheet. SPICE simulation was done using MicroSim® PSpice® release 8. Most of the parameters are measured using Vcc=±15 V, and performance follows at lower voltages.
Figure 1. Output Voltage (pk) vs Temperature

Figure 2. Output Voltage (pk) vs Temperature

Figure 3. Supply Current vs Temperature

Figure 4. Supply Current vs Temperature

Figure 5. Bias Current vs Temperature

Figure 6. Bias Current vs Temperature
Figure 7. Input Offset Voltage vs Temperature

Figure 8. Input Offset Voltage vs Temperature

Figure 9. Common-Mode Rejection Ratio vs Frequency

Figure 10. Common-Mode Rejection Ratio vs Frequency
6 THS3001 SPICE Model Performance
Figure 15. Slew Rate vs Output Voltage (pp)

Figure 16. Slew Rate vs Output Voltage (pp)

Figure 17. 2nd Harmonic vs Frequency

Figure 18. 2nd Harmonic vs Frequency
Figure 19. 3rd Harmonic vs Frequency

Figure 20. 3rd Harmonic vs Frequency

Figure 21. Differential Gain vs Loads

Figure 22. Differential Phase vs Loads

Figure 23. Differential Gain vs Loads

Figure 24. Differential Phase vs Loads

VCC = ±5 V

VCC = ±15 V

VCC = ±5 V

VCC = ±15 V

VCC = ±5 V

VCC = ±15 V

150 Loads

150 Loads

150 Loads

150 Loads

Differential Gain – %

Differential Phase – deg

Differential Gain – %

Differential Phase – deg
Figure 25. Differential Gain vs Loads

Figure 26. Differential Phase vs Loads

Figure 27. Differential Gain vs Loads

Figure 28. Differential Phase vs Loads

Figure 29. Closed-Loop Gain vs Frequency

Figure 30. Closed-Loop Gain vs Frequency
Figure 31. Closed-Loop Gain vs Frequency

Figure 32. Closed-Loop Gain vs Frequency

Figure 33. Closed-Loop Gain vs Frequency

Figure 34. Closed-Loop Gain vs Frequency

Figure 35. Output Impedance vs Frequency
11 THS3001 SPICE Model Performance

OUTPUT VOLTAGE VS TIME

![Output Voltage vs Time](image)

- $G = 4.9$, $R_f = 390 \Omega$
- $R_L = 150 \Omega$, $V_{CC} = \pm 15 \text{ V}$

Gain and Phase vs Frequency

![Gain and Phase vs Frequency](image)

- Bessel, $f_c = 159 \text{ kHz}$,
- $R = 1 \text{ k}\Omega$, $C = 1 \text{ nF}$,
- $K = 1$, $R_f = 1 \text{ k}\Omega$, $V_{CC} = \pm 15 \text{ V}$

Figure 36. Output Voltage vs Time

Figure 37. Gain and Phase vs Frequency

Figure 38. Open Loop Transimpedance Gain vs Frequency

Figure 39. Open Loop Transimpedance Gain vs Frequency
4 Schematic and Subcircuit Listing

The schematic representation of the model and the subcircuit listing follow.

![THS3001 SPICE Model Schematic](image)

Figure 40. THS3001 SPICE Model Schematic
THS3001 SUBCIRCUIT
HIGH SPEED, CURRENT FEEDBACK, OPERATIONAL AMPLIFIER
WRITTEN 8/10/99
TEMPLATE=X^@REFDES %IN+ %IN– %Vcc+ %Vcc– %OUT @MODEL

CONNECTIONS:
NON-INVERTING INPUT
| INVERTING INPUT
| POSITIVE POWER SUPPLY
| | NEGATIVE POWER SUPPLY
| | | OUTPUT

.SUBCKT THS3001 1 2 3 4 5

INPUT *
Q1 31 32 2 NPN_IN 4
QD1 32 32 1 NPN 4
Q2 7 15 2 PNP_IN 4
QD2 15 15 1 PNP 4

PROTECTION DIODES *
D1 1 3 Din_N
D2 4 1 Din_P
D3 5 3 Dout_N
D4 4 5 Dout_P

SECOND STAGE *
Q3 17 31 11 PNP 2
Q4 16 7 13 NPN 2
QD3 30 30 17 PNP 3
Q4 30 30 16 NPN 3
C1 30 3 0.4p
C2 4 30 0.4p
F1 3 31 VF1 1
VF1 33 34 0V
F2 7 4 VF2 1
VF2 35 6 0V
F3 3 12 VF3 1
VF3 34 11 0V
F4 14 4 VF4 1
VF4 13 35 0V
* FREQUENCY SHAPING *
E1 18 0 17 0 1
E2 19 0 16 0 1
R1 44 18 25
R2 19 42 25
C3 0 14 9p
C4 0 12 9p
L1 44 14 2.8n
L2 42 12 2.8n
* OUTPUT *
Q5 3 14 28 NPN 128
Q6 4 12 29 PNP 128
C5 28 9 7p
R5 9 5 100
L3 28 10 30n
R7 10 5 8
Re 28 29 Rt 50
C6 29 21 7p
R4 21 5 100
L4 29 22 30n
R6 22 5 8
* BIAS SOURCES *
G1 3 32 VALUE = { 308e–6+1.656e–6*V(3, 4) }
G2 15 4 VALUE = { 307e–6+1.656e–6*V(3, 4) }
V1 3 33 0.83
V2 6 4 0.83
.MODEL Rt RES TC1=–0.006
* DIODE MODELS *
.MODEL Din_N D IS=10E–21 N=1.836 ISR=1.565e−9 IKF=1e−4 BV=30 IBV=100E−6 RS=105 TT=11.54E−9
CJO=2E–12 VJ=.5 M=3333
.MODEL Din_P D IS=10E–21 N=1.836 ISR=1.565e−9 IKF=1e−4 BV=30 IBV=100E−6 RS=105 TT=11.54E−9
CJO=2E–12 VJ=.5 M=3333
.MODEL Dout_N D IS=10E–21 N=1.836 ISR=1.565e−9 IKF=1e−4 BV=30 IBV=100E−6 RS=105 TT=11.54E−9
CJO=2E–12 VJ=.5 M=3333
.MODEL Dout_P D IS=10E–21 N=1.836 ISR=1.565e−9 IKF=1e−4 BV=30 IBV=100E−6 RS=60 TT=11.54E−9
CJO=2E–12 VJ=.5 M=3333
* TRANSISTOR MODELS *
.MODEL NPN_IN NPN
+ IS=170E–18 BF=100 NF=1 VAF=100 IKF=0.0389 ISE=7.6E–18
5 About Building a Symbol

The first line of the subcircuit definition — .SUBCKT THS3001_NN 1 2 3 4 5 — defines the name of the model and the subcircuit nodes available for external connection. When creating a symbol in PSpice®, the subcircuit node assignments need to match the TEMPLATE device property, and the MODEL value must equal the model name. The comment line in the file * TEMPLATE = X^@REFDES %IN+ %IN– %VCC+ %VCC– %OUT @MODEL gives the proper value for the TEMPLATE property. This associates the symbol pin names with subcircuit nodes available for external connections. The symbol pin numbers are used for packaging purposes and are not used for simulation. Using the forgoing results in the following associations:

<table>
<thead>
<tr>
<th>Subcircuit Node</th>
<th>THS3001 Symbol Pin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IN–</td>
</tr>
<tr>
<td>3</td>
<td>Vcc+</td>
</tr>
<tr>
<td>4</td>
<td>Vcc–</td>
</tr>
<tr>
<td>5</td>
<td>OUT</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated