Evaluating the TLV2462 and TLV2772 as Drive Amplifiers for the TLV2544/TLV2548 ADC

Jim Karki
AAP Precision Analog

ABSTRACT

This report presents a method for comparing the ac performance of the TLV2462 and TLV2772 operational amplifiers to the ac performance of the TLV2544/TLV2548 analog-to-digital converter.

Contents

1 Introduction ... 2
2 Test Circuits ... 2
3 Lab Results ... 3
4 Conclusion ... 5

List of Figures

1 Equivalent ADC Input ... 2
2 Test Circuits ... 3
3 ENOB vs Frequency—TLV2462 at 3.3 V 3
4 ENOB vs Frequency—TLV2462 at 5 V 4
5 ENOB vs Frequency—TLV2772 at 3.3 V 4
6 ENOB vs Frequency—TLV2772 at 5 V 5
1 Introduction

The old adage that a chain is only as strong as its weakest link can be used as analogy to the
signal chain in an analog system. Once the signal is degraded by weak components, the chain
is compromised.

Amplifiers are used to condition the input signal to ADCs (analog-to-digital converters). Normally
the functions performed are level shifting, impedance matching, amplification, and the like. The
drive amplifier is the link between the input source and the ADC. It must not be weak. It does not
make sense to use a very strong ADC with great specs in conjunction with a weak amplifier.

When selecting an amplifier, often times ac performance factors such as bandwidth, slew rate,
noise, and distortion drive the decision-making process, with dc errors taking a back seat. One
of the difficulties in doing this is that operational amplifiers are not normally specified in the same
manner as ADCs.

ENOB (effective number of bits) is a key ac parameter used for ADCs. It is calculated based on
SINAD (signal-to-noise + distortion) in dB, where $\text{ENOB} = \frac{\text{SINAD} + 1.76}{6.02}$. By measuring the
THD+N (total-harmonic-distortion + noise) in dB of the TLV2462 and TLV2772 in different circuit
topologies, and then substituting THD+N for SINAD when calculating ENOB, the amplifier’s
performance is directly comparable to the TLV2544/TLV2548 ADC.

2 Test Circuits

The input to the TLV2544/TLV2548 ADC is modeled as shown in Figure 1. During sampling, the
input is active and appears as a series resistor and capacitor to ground—typical values are 1 kΩ
and 60 pF. When not sampling, the input is high-impedance.

![Sampled Voltage](image1)

Figure 1. Equivalent ADC Input

Figure 2 shows the noninverting, inverting, and differential amplifier circuits tested. A 1-kΩ
resistor in series with a 68-pF capacitor is placed on the output of each amplifier to simulate the
input of the ADC. The value of resistive components (R) is varied between 1 kΩ, 10 kΩ, and 100
kΩ to show their impact. Note that in the TLV2772 noninverting circuit with 10-kΩ, and 100-kΩ
resistor values, a small feedback capacitor is required for stability due to the capacitance of the
cabling and measuring instrument. Also $R = 0 \Omega$ is tested for the noninverting amplifiers.

Audio Precision’s model 2322–System Two is used to measure the THD+N of the amplifier
circuits. The analog test signal is a sine wave that is swept from 10 Hz to 200 kHz. The
measurement bandwidth is 10 Hz to 500 kHz.

It is assumed that it is desired to operate the amplifier from the same 3.3-V or 5-V voltage
source used by the ADC. The amplifier is typically biased so that the output is at 1/2 the
full-scale voltage of the ADC with zero input. To simplify testing, the amplifiers use supply
voltages of ±1.65 V to simulate a 3.3-V system, and ±2.5 V to simulate a 5-V system. The input
signal is referenced to ground with peak levels of 0.89 V and 1.78 V. These levels are equivalent
to 1 dB down in 2-V and 4-V full-scale systems.
3 Lab Results

ENOB can be calculated as: \[\text{ENOB} = \frac{\text{THD} + N \pm 1.76}{6.02} \]. Figures 3 through 6 show the results of testing the ENOB, with the TLV2544/TLV2548 shown for comparison.

![Figure 2. Test Circuits](image)

![Figure 3. ENOB vs Frequency—TLV2462 at 3.3 V](image)
Evaluating the TLV2462 and TLV2772 as Drive Amplifiers for the TLV2544/TLV2548 ADC

Figure 4. ENOB vs Frequency—TLV2462 at 5 V

Figure 5. ENOB vs Frequency—TLV2772 at 3.3 V
4 Conclusion

The data shows that the TLV2462 and TLV2772 inverting and differential-amplifier topologies with resistive elements of $R = 10 \, k\Omega$ result in the strongest amplifier performance.

This result may appear surprising at first since the noise gain of the inverting amplifier is twice that of the noninverting amplifier. The larger values of THD+N measured in the noninverting mode stem from the fact that the input bias point is made to move through most of its common-mode voltage range, resulting in larger distortion products with noise being less dominant. The input-bias point of the differential amplifier is also made to change, but only 1/4 as much. In the inverting topology, the input remains biased midway between the power supply rails. This optimizes distortion performance.

Actually, noise is what limits the performance of the noninverting and differential amplifiers. Since noise is proportional to the square-root of the bandwidth, two more bits are added to the ENOB when the bandwidth is limited to 20 kHz.

Figure 6. ENOB vs Frequency—TLV2772 at 5 V
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated