ABSTRACT

The TPA2051D3 audio subsystem from TI uses the I²C bus to communicate between integrated circuits in a system. This document explains how to choose the appropriate resistor values for the I²C interface connection to the TPA2051D3.

1 Overview

The TPA2051D3 uses the I²C bus to communicate between integrated circuits in a system. It operates as an I²C slave and employs two signals: SDA (data) and SCL (clock). The I²C pins feature an open-drain architecture; therefore, an external pull-up resistor must be used for the SDA and SCL signals to set the logic high level for the bus.

Figure 1 shows a typical application circuit with the TPA2051D3 and the host processor. VIO corresponds to the I²C bus level, which can range from 1.7 V to 3.3 V.

![Figure 1. TPA2051D3 I²C Bus Connections](image)

The TPA2051D3 holds the SDA pin low to indicate acknowledgement at each transfer operation. VOL corresponds to the voltage level at the SDA pin during the ACK clock period. By design, the expected VOL\text{Max} with a 3.3-mA sink current is VOL\text{Max} = 0.2 \times \text{VIO}.

2 Recommendation

The recommended pull-up resistor value for proper VOL is 1 kΩ, as shown in Figure 1. Using a 1-kΩ pull-up resistor will work well for a wide range of I²C bus voltages and will prevent the VOL sink current from causing issues at the system level.

I²C is a trademark of NXP Semiconductors. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by governmental requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions: