Benefits of Auto-Resonance Tracking

ABSTRACT

The DRV2603, DRV2604, and DRV2605 (DRV260x devices) are linear resonant actuator (LRA) and eccentric rotating mass motor (ERM) haptic drivers with unique features to ease haptic design and system-level challenges. For LRA’s, these drivers feature a unique auto-resonance tracking engine which automatically tracks and generates the LRA resonant frequency.

This application report discusses the benefits of auto-resonance tracking in the DRV2605 including vibration strength, response time, and efficiency. These benefits are also applicable to the DRV2603 and DRV2604.
1 Introduction

The DRV260x family of devices use a unique LRA control algorithm called auto-resonance tracking. Auto-resonance tracking uses the back-EMF of an LRA to detect and track the resonance frequency. The DRV2605 then uses this resonance frequency information to drive the LRA in closed loop. Auto-resonance provides numerous benefits and eases the integration of LRAs:

- Stronger and more consistent vibrations across actuators
- Lower power consumption while driving at resonance
- The ability to overdrive and brake an LRA and achieve better response time

Figure 1 shows the input and output signals in an auto-resonance tracking system.

![Figure 1. LRA Auto-Resonance Detection](image)

The green waveform is the (PWM) input to the DRV2605 and is a filtered PWM-modulated DC signal representing the waveform envelope or amplitude of the output waveform. The black line represents the sine wave output generated by the DRV2605 with the detected resonant frequency.
How Auto-Resonance Tracking Works

Auto-resonance tracking takes advantage of the back-EMF generated by an LRA to determine the resonant frequency. TI has characterized this back-EMF to determine how best to control the LRA frequency, vibration strength, and start and stop time.

![DRV2605 Block Diagram](image)

Auto-resonance tracking makes use of the electro-mechanical properties of an LRA. Inside the LRA, the back-EMF changes as the magnet moves closer or further away from the drive electrodes. This back-EMF signal is sensed on the output pins by the DRV2605 every cycle and sent to the auto-resonance engine. The auto-resonance engine then determines the frequency.

If the frequency is too high, the DRV2605 will reduce the output frequency, and if the frequency is too low, the DRV2605 will increase the output frequency. This dynamic tracking will ensure more consistent vibration. Consistent vibration is much harder to achieve with a non-auto-resonance drivers, because the LRA resonant frequency can constantly vary as a result of manufacturing tolerances and environmental factors. Having real-time tracking of the resonant frequency is important to keep a strong, consistent vibration.
3 Auto-Resonance Vibration Strength

Linear resonant actuators have a very narrow resonant frequency, as shown in Figure 3. The narrow resonance is a result of the resonance behavior of the spring and mass inside the LRA. An LRA will have a resonance at one frequency with a steep drop on either side.

![Graph](VDD_3.6_V_SEMCO_1030_LRA)

Figure 3. Resonant Frequency of Linear Resonant Actuators

The graph in Figure 3 shows acceleration versus frequency using three different driver output voltages. As the voltage increases, likewise the acceleration, the resonance frequency shifts making it impossible to predetermine the resonance frequency of an LRA.

Auto-resonance will ensure vibration performance across all actuators, no matter the resonance frequency. TI’s auto-resonance algorithm dynamically determines the resonance frequency as the actuator is vibrating.
Figure 4 depicts the lab results of 21 actuators driven by the DRV2605 (blue dots) and the DRV8601 without auto-resonance (orange dots). The 21 actuators have datasheet specified resonant frequencies of 230Hz, but are separated into 7 frequency groups based on their actual resonant frequency at maximum acceleration. The orange dots are driven at 230Hz and the blue dots are driven by the auto-resonance tracking algorithm. From the graph, the DRV2605 shows consistent acceleration across actuators, while the orange has mixed results due to the constant drive frequency (230 Hz). The graph shows that auto-resonance provides consistent acceleration across actuators.
4 Auto-Resonance Efficiency

An LRA is a spring-mass system and thus must be driven at the resonance frequency to maximize efficiency. Similar to an electrical circuit at resonance, the LRA will reuse energy in the system when vibrating at resonance. Driving at a frequency a few hertz off resonance while trying to achieve the same performance as resonance operation will cause the mechanical spring force to oppose the magnetic force of the driver, resulting in wasted energy.

The DRV2605 with auto-resonance detection can ensure that the actuator is driven efficiently. We measure efficiency using two metrics:
1. The common electric metric of power in watts
2. The normalized watts per g, which is the power in watts, mentioned above, divided by the acceleration produce by the actuator.

Output power for the 21 actuators in the previous section were measured and resulted in large efficiency improvements when driven by the DRV2605. Table 1 shows the percentage difference in efficiency for the 21 actuators. The improvement is a result of auto-resonance tracking.

<table>
<thead>
<tr>
<th>No Auto-Resonance (Output ~230 Hz)</th>
<th>Auto-Resonance</th>
<th>Efficiency Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (mW)</td>
<td>Acceleration (G)</td>
<td>Power (mW)</td>
</tr>
<tr>
<td>1</td>
<td>143.9</td>
<td>2.96</td>
</tr>
<tr>
<td>2</td>
<td>152.6</td>
<td>2.99</td>
</tr>
<tr>
<td>3</td>
<td>145.3</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>147.9</td>
<td>2.21</td>
</tr>
<tr>
<td>5</td>
<td>147.6</td>
<td>2.65</td>
</tr>
<tr>
<td>6</td>
<td>151.8</td>
<td>2.23</td>
</tr>
<tr>
<td>7</td>
<td>148.4</td>
<td>1.83</td>
</tr>
<tr>
<td>8</td>
<td>148.7</td>
<td>2.58</td>
</tr>
<tr>
<td>9</td>
<td>146.7</td>
<td>2.05</td>
</tr>
<tr>
<td>10</td>
<td>149.3</td>
<td>1.94</td>
</tr>
<tr>
<td>11</td>
<td>148.1</td>
<td>1.85</td>
</tr>
<tr>
<td>12</td>
<td>153.2</td>
<td>2.2</td>
</tr>
<tr>
<td>13</td>
<td>145.8</td>
<td>2.11</td>
</tr>
<tr>
<td>14</td>
<td>144.3</td>
<td>2.12</td>
</tr>
<tr>
<td>15</td>
<td>144.3</td>
<td>2.17</td>
</tr>
<tr>
<td>16</td>
<td>149.9</td>
<td>1.75</td>
</tr>
<tr>
<td>17</td>
<td>148.7</td>
<td>1.57</td>
</tr>
<tr>
<td>18</td>
<td>148.9</td>
<td>1.45</td>
</tr>
<tr>
<td>19</td>
<td>148.3</td>
<td>2.36</td>
</tr>
<tr>
<td>20</td>
<td>148.2</td>
<td>1.56</td>
</tr>
<tr>
<td>21</td>
<td>148.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 1. Efficiency Improvements with Auto-Resonance

AVG 148.0 2.2 71.1 117.4 3.2 37.2 51.8% 20.6% 45.0%

Benefits of Auto-Resonance Tracking
5 Auto-Resonance Braking

LRA braking is a unique feature only available on the TI auto-resonance drivers. An LRA must be driven at the resonant frequency to obtain the best vibration and startup performance. Likewise, to brake an LRA, it must also be driven using the resonant frequency, except 180 degrees out-of-phase.

Figure 5 shows a click waveform that is driven at resonance for 4 1/2 cycles. Braking is then applied using a 180 degree out-of-phase sine-wave. In addition to applying the inverse phase waveform, the DRV2605 also tracks the acceleration of the LRA and adjusts the output voltage according to the level of the acceleration. This ensures the LRA stops quickly and does not begin vibrating again.

Figure 5. Auto-Resonance Braking

Figure 6 and Figure 7 compare the stop time of an LRA with braking and an LRA without braking. Notice the orange output waveform in Figure 7 reverses phase at the falling edge of the input signal. This active braking allows the LRA to stop 75 ms quicker than the waveform in Figure 6 that does not brake. This translates qualitatively into a "sharper" or "crisper" click.

6 How to Measure Auto-Resonance

The question that often arises is “How can I measure the auto-resonance frequency?” Measuring the frequency is quite easy. To see what frequency the DRV260x family of devices is driving, measure the filtered PWM-modulated output waveform. Filtering the output waveform will allow you to see the underlining sine wave. See the DRV2605EVM-CT User’s Guide (SLOU348) for more information on filtering.
Measuring the output frequency may be clear, but “How do I know that the DRV260x drivers are driving at the resonant frequency?” The answer is, “The exact resonant frequency cannot be determined empirically, because of the many environmental factors.” It is easier to answer a different question: “Is the performance better with auto-resonance tracking?” The answer is “yes”. Auto-resonance dynamically tracks the LRA frequency to improve acceleration, efficiency, and braking time.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
- **Audio**
 - www.ti.com/audio
- **Amplifiers**
 - amplifier.ti.com
- **Data Converters**
 - dataconverter.ti.com
- **DLP® Products**
 - www.dlp.com
- **DSP**
 - dsp.ti.com
- **Clocks and Timers**
 - www.ti.com/clocks
- **Interface**
 - interface.ti.com
- **Logic**
 - logic.ti.com
- **Power Mgmt**
 - power.ti.com
- **Microcontrollers**
 - microcontroller.ti.com
- **RFID**
 - www.ti-rfid.com
- **OMAP Applications Processors**
 - www.ti.com/omap
- **Wireless Connectivity**
 - www.ti.com/wirelessconnectivity

Applications
- **Automotive and Transportation**
 - www.ti.com/automotive
- **Communications and Telecom**
 - www.ti.com/communications
- **Computers and Peripherals**
 - www.ti.com/computers
- **Consumer Electronics**
 - www.ti.com/consumer-electronics
- **Energy and Lighting**
 - www.ti.com/energy
- **Industrial**
 - www.ti.com/industrial
- **Medical**
 - www.ti.com/medical
- **Space, Avionics and Defense**
 - www.ti.com/space-avionics-defense
- **Security**
 - www.ti.com/security
- **Video and Imaging**
 - www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated