The TAS5421 I2C bus is designed to operate when the device is not in STANDBY mode as defined in the TAS5421 datasheet. In some applications special handling of the SDA pin may be required. For these applications there are three options which can be employed to minimize the effect.

Contents

1 TAS5421-Q1 I2C Bus Operation ... 1
2 TAS5421-Q1 Options .. 1

List of Figures

1 Option 1 ... 2

List of Tables

1 TAS5421-Q1 I2C Bus Operation

1.1 Standby Mode

In STANDBY mode, the device is designed to draw the lowest current possible for use in battery operated applications. Therefore, in STANDBY mode the device goes into complete shutdown. The TAS5421 datasheet specifies the following Operating Modes while the device is in STANDBY:

- OUTPUT: Hi-Z, floating
- OSCILLATOR: Stopped
- I2C: Stopped

When the TAS5421 is in STANDBY mode, the SDA pin may be pulled low due to parasitic effects if the micro-controller (MCU) communicates with other I2C devices on the bus.

1.2 Mute and Play Mode

The I2C bus is active when STANDBY pin is de-asserted, i.e. STANDBY pin is set to logic high. This is when the device is either in Mute or Play mode. TI warranties TAS5421 operations when the device is out of STANDBY as described in the data sheet (SLOS814D).

The SDA pin usage is described in the following sections. The described options below follow the data sheet recommendation, i.e. all I2C communications is performed during STANDBY high. The descriptions are meant to clarify the usage stated in the data sheet. The solutions described below do not alter TI’s warranty, other terms of sale, or the applicable specification.

2 TAS5421-Q1 Options

2.1 Option 1

A bi-directional switch or FET switch (e.g. SN74LVC1G66-Q1) is used to isolate SDA pin when TAS5421 is in STANDBY. A MCU can control the switch/FET using a GPIO pin to allow TAS5421 SDA pin on the bus when the device is in mute or play mode. When the device is in STANDBY mode, the MCU switches off the switch/FET and isolates the TAS5421 pin from the I2C bus.
2.2 Option 2

In some applications, when a digital signal processor (DSP) is used, it may have several I2C ports. One I2C port can be assigned to TAS5421. The DSP can talk to other I2C devices on the other port while the TAS5421 is in STANDBY.

2.3 Option 3

For some applications, a micro-controller (MCU) is used to facilitate device(s) functions via I2C bus and GPIO pins (General Purpose Input/Output). Embedded software in the MCU can program one of the GPIO pins controlling the STANDBY pin on TAS5421. When I2C commands are being sent to the device(s), the GPIO pin can pull STANDBY pin high prior to sending I2C transactions.

Please see TAS5421-Q1 data sheet section 7.3.5 Load Diagnostics for startup timing.

NOTE: The above three options clarify the usage of the STANDBY pin during I2C communications, i.e. STANDBY pin is pulled high. The described usage of the STANDBY pin in the data sheet (SLOS814D) may not be obvious to the reader and it is clarified here in this application note.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated