ABSTRACT

Commercial telecom equipment needs multiple power input systems to ensure continuous network connectivity. The load must be backed up to different sources. This application note describes a synchronous-buck-based reference design using MSP430 and CSD87350 power blocks, which use multiple OR'ed inputs (solar and AC/DC adaptor) to charge a 12-V SLA battery. Priority charging is used when solar energy is available. Seamless transfer between two sources ensures battery is always charged when inputs are available. It runs MPPT algorithms to charge while on solar input and conventional CC/CV charging when working from an adaptor input. Multiple protection schemes ensure it is a robust design.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Design Specifications</td>
<td>2</td>
</tr>
<tr>
<td>2 Block Diagram</td>
<td>2</td>
</tr>
<tr>
<td>3 System Explanation and Design</td>
<td>3</td>
</tr>
<tr>
<td>4 Software Flow</td>
<td>4</td>
</tr>
<tr>
<td>5 Schematics</td>
<td>9</td>
</tr>
<tr>
<td>6 Test Results</td>
<td>11</td>
</tr>
</tbody>
</table>
1 Design Specifications

Table 1. Design Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN} range</td>
<td>Panel</td>
<td>16.5 to 21 V</td>
</tr>
<tr>
<td></td>
<td>Adaptor</td>
<td>15.5 to 16 V</td>
</tr>
<tr>
<td>Battery specifications</td>
<td>Capacity</td>
<td>12 V, 100 Ah</td>
</tr>
<tr>
<td>Charging specifications</td>
<td>Charging current</td>
<td>7 A</td>
</tr>
<tr>
<td></td>
<td>Voltage during CV mode charging</td>
<td>14.2 V</td>
</tr>
<tr>
<td>f_{SW}</td>
<td>Switch frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Output specifications</td>
<td>Load current</td>
<td>4 A</td>
</tr>
<tr>
<td></td>
<td>Output voltage</td>
<td>10.2 to 14.2 V</td>
</tr>
<tr>
<td>Protection features</td>
<td>• Hot swappable load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output short circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reverse polarity protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Two level overcurrent protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Battery UVLO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Overtemperature protection</td>
<td></td>
</tr>
</tbody>
</table>

2 Block Diagram

Figure 1 shows the block level implementation of the system.
3 System Explanation and Design

3.1 Power Source Control and Monitoring

The telecom equipment (load) is always powered either from a solar panel, AC/DC adaptor, or the battery. As long as solar energy from the panel is available, priority charging is used to deliver the required power (average 17 V and current sufficient enough to manage load or to charge battery). If panel voltage drops below adapter (15 V), the charge controller microcontroller turns off the panel switch and turns on the AC/DC adapter switch, which also ensures no leakage of the stronger source into the weaker one. Two 30-V, ultra-low R\text{DS(on)} FETs from TI (CSD17527Q5A) are selected for this purpose. The simple transistor is used for proving the drive from the microcontroller.

3.2 Synchronous Buck Power Stage

The synchronous buck convertor has better efficiency and lower loss compared to asynchronous topology because a diode on the bottom side is replaced with a low R\text{DS(on)} value. A single 30-V, 25-A power block from TI (CSD87350Q5D) is selected for this. The advantage of a power block is the smaller package and ease of layout eliminating parasitics of board layout of high frequency hot nodes. The microcontroller PWM module can generate multiple PWMs on the same timer base. Each output can be configured for different output modes, for example, toggle, reset/on, reset/off, always on, and so forth. With this flexible logic, the user can achieve complimentary logic with required dead band. However, a driver UCC27211 is used to enable ease of driving. The other power stage components (inductor and capacitor) calculations are designed using standard equations of the buck converter based on the prior specifications.

- L\text{OUT (cal)} = 12.67 \mu H, selected L\text{OUT} = 10 \mu H, from Wurth Electronics
- Selected C\text{OUT} = 47 \mu F \times 1; 22 \mu F \times 2

3.3 Current Sense Inputs

To ensure continuity to ground loop, a high-side sense circuit was used. A zero-drift instrumentation amplifier from TI, INA282, with a 50-V/V gain, wide common-mode input range is selected for this application.

3.4 Load Management

A simple load switch with hotswap control from TI TPS25910 is used for monitoring the load behavior. If there is any short or overload, it immediately trips sending it into a hiccup mode on the load. The fast-trip comparator of the microcontroller also quickly disables the PWM. This is second-level protection for the load. To prevent the load from discharging back into the source, a blocking FET (CSD17313Q2) from TI is used. It is controlled by the load switch.

3.5 Microcontroller

A MSP430F5132 microcontroller is used in this application. See Section 4 for further details of the software routines.

3.6 LDO and Temperature Sensor

A simple OR'ed supply is used as the input of the LDO to ensure that power to the controller is always available to sense any inappropriate condition. The 3.3 V generated by the LDO (TPS73801) is used to power the MCU, LEDs, instrumentation amplifiers, and a simple thermostat TMP709, which is used for tripping the load in case there is any abnormal increase in the temperature.

3.7 Batteries Management

The section explains the battery management software portion in the microcontroller. It checks for the state-of-charge of the battery and applies the charging profile appropriately. This application uses a lead-acid battery. The following list shows the battery properties that are considered while charging.

- Minimum 2.10 V per cell is considered as a good battery
- Cells in a string are not the same strength, some are weak and some are strong
• Should not be charged above 50°C
• Overcharging increases the risk of hydrogen gassing on the positive plate.
• Undercharging increases sulfation on the negative plate.
• Battery charge profile is in constant current mode until battery attains, for example, 70%, constant voltage mode from 70% to 90% and float charge after that.

3.8 Maximum Power Point Tracking Algorithm
A simple MPPT algorithm known as perturb and observe is used for controlling this system. As explained in the PWM Resolution section, every one count of PWM timer yields 0.04% of duty cycle variation, which is “fine” enough to achieve smoother and slower tracking. With this at MPP stage, there will be 0.04% oscillation which may be negligible in a low-power application. If duty cycle variation is increased more than 1 count, tracking is faster and reduces the variation to minimize the MPP stage oscillations. This also resembles incremental conductance method. It monitors battery/load current with respect to ΔV applied to the converter, increasing the ΔV drives to MPP faster and at the MPP stage reduces the ΔV and settles smoothly at MPP.

4 Software Flow
This application uses the MSP430F5132 microcontroller. The following are key features, which enable efficient usage of resources to achieve an efficient solar power convertor.

MSP430F5132 key features supporting efficiency expectation:
• Fully operates from 3.6 to 1.8 V
• Only 180-µA/MHz active current, lowest current at shut down is 0.25 µA
• Fast wake-up, less than 5 µs from stand by
• 200 KSPS, 10-bit ADC, with just 110-µA current consumption with built-in reference
• Hi-resolution timer/PWM = 4-ns minimum pulse duration, 250-µA current consumption

4.1 PWM Resolution
The MSP430F5132 has a special hi-resolution timer, timer-D. This timer can be programmed to generate high switching frequency to accommodate a smaller inductor’s size. This timer is clocked from the following sources:
• MCLK/SMCLK – Maximum range is 16 MHz
• ACLK – Maximum 32 kHz
• Special timer-D clock generator of the following values:
 – 64 MHz
 – 128 MHz
 – 200 MHz
 – 256 MHZ

Effective number of bits (ENOB) is an important parameter in achieving smoother control, thereby reducing switching noise and protecting the battery from stress caused by larger voltage variations caused in a low-resolution system.

\[
ENOB = \log_2(\text{Module clock} / \text{Output frequency})
\]

This application requires 100-kHz switching frequency. Therefore, the following settings provide,

Module clock = 256 MHz
Output frequency = 100 kHz

ENOB = 11.36 bits

\[
V_{out} = D \times V_{in}
\]

where

• D = Duty cycle or on-time of the switch
- V_{in} = Input voltage (from battery, solar panel, or ACDC adapter)
- V_{out} = Output voltage

Consider the converter to be 100% efficient. Therefore, no loss factor is taken into account in this calculation. For a single bit change in D varies by approximately 4 ns in a 100-kHz period wave, which is 0.038% of V_{in}; if a V_{in} of 17, V_{out} varies by 0.00646 V.

4.2 ADC Module

This device has 10-bit SAR ADC, speed can be configured for 50ksps for low power or 200ksps for faster processing. This application can go slow, which helps to conserve additional power loss caused by the ADC module itself (refer to the data sheet for power consumption data). This module can be operated independently without sharing the CPU clock. Hence, the CPU can be placed in low-power mode, enabling only the ADC to function.

A special ADC DMA can be configured to scan all channels and interrupt the CPU when data is available at the RAM for further processing. This application requires 6 channels: battery current, panel current, battery voltage, panel voltage, load current, and temperature sensor. Therefore, a 6-channel conversion is required every loop, until then the CPU can be put in IDLE to conserve power.

4.3 ADC Measurement Range

This MCU has a 10-bit SAR ADC, input voltage range is 0 V to AVCC, which can be up to 3.6 V (refer to data sheet for more electrical data). Hence, input signal strength can be from 3.3 mV per count of ADC until 3.3 V (1023 counts) can be sensed. Sense resistors are 5 mΩ. Hence, minimum current sensible from panel/load/battery with a gain of 50 is about 13 mA.
ADC Interrupt every 100 ms

SAMPLE
- Panel Voltage (P_V)
- Panel Current (P_I)
- Battery Voltage (B_V)
- Battery Current (B_I)
- Adaptor Voltage (A_V)
- Load Current (A_I)

Wait for ADC Interrupt

B_V > P_V
&&
B_V > A_V

Yes

- Disable Battery Charging Algorithm
- Only Load Management Thread
- Turn OFF Panel and Adaptor Indicator LEDs

P_V < A_V
&&
P_I ~= 0*

Yes

- Panel Switch OFF, Adaptor switch ON
- Turn OFF Panel LED and Turn ON Adaptor Indicator LED
- Load Management and CC/CV Mode

P_V > A_V
&&
P_I > Lowest Threshold*

Yes

- Call Current Control (MPPT) and Load Management

P_V > B_V
&&
P_I > Threshold

Yes

- Load Management

No

- Adaptor Switch OFF, Panel switch ON
- Turn OFF Adaptor LED and Turn ON Panel Indicator LED

Figure 3. Control Loop Flow Chart
Current Control Loop Start (MPPT)

Sample Battery Current \(I_B(n)\)

Yes

\(I_B(n) > I_B(n-1)\)

Increment PWM Duty Cycle Count

No

Decrement PWM Duty Cycle Count

Charge < 20%

State of Charge

Charge > 70%

Fast Charge CC Mode

Charge > 70%

Topping Charge CV Mode

Charge > 95%

Float Charge

Fault Wait

Charge > 20%

Short

Safety Test

Temp

Open

Figure 4. MPPT Algorithm Flow Chart

Figure 5. Battery Management Flow Chart
ADC Interrupt
Every 100 ms

Run MPPT Charging Loop if Solar Panel Powered

Run CC/CV Charging Loop if Adapter Powered

Run Load Management Loop

Run Battery Management Loop

CPU Idle State

Figure 6. Control Loop Logic
Hybrid Battery Charger With Load Control for Telecom Equipment

5 Schematics

PANEL CONNECTOR

CONVERTER CURRENT SENSE

LOAD CURRENT SENSE

BATTERY CHARGER CIRCUIT

PANEL CONNECTOR

ADAPTOR CONNECTOR

PANEL AND ADAPTOR VOLTAGE SENSE

SLPA013—October 2014
Submit Documentation Feedback
6 Test Results

Figure 7. Variation of the Duty Cycle from the Controller

Figure 8. Seamless Transfer from Panel to Adaptor
Figure 9. Output PWM Pulses from UCC27211

Figure 10. Load Switch Response to Short Circuit
Figure 11. MSP430 Fast Trip Comparator Response to Load Short Circuit (EN)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated