Introduction
The operation of the time-base oscillator is critical to the time-keeping functions of the bq3285, bq4285, and bq4845 series of Real-Time-Clocks. For simplicity, the term "RTC" refers to this product family.

This application note describes some basic characteristics of the piezoelectric crystal and the on-chip crystal oscillator circuitry designed into the RTC. This application note also includes suggestions for achieving time-keeping accuracy and circumventing oscillator start-up problems.

Time-Base Crystal
The RTC time-base oscillator is designed to work with an external piezoelectric 32.768kHz crystal. A crystal can be represented by its electrical equivalent circuit and associated parameters as shown in Figure 1 and Table 1, respectively.

\[L_1, C_1, \text{and } R_1 \text{ are known as the motional arm of the circuit.} \]

\[L_1 \text{ is the motional inductance, } C_1 \text{ represents the motional capacitance of the quartz, and } R_1 \text{ represents the equivalent motional arm resistance or series resistance.} \]

\[C_0 \text{ is the static or shunt capacitance and is the sum of the capacitance between electrodes and the capacitances added by the leads and mounting structure.} \]

Table 1. Crystal Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal frequency</td>
<td>F</td>
<td>kHz</td>
</tr>
<tr>
<td>Load capacitance</td>
<td>C_L</td>
<td>pF</td>
</tr>
<tr>
<td>Motional inductance</td>
<td>L_1</td>
<td>H</td>
</tr>
<tr>
<td>Motional capacitance</td>
<td>C_1</td>
<td>pF</td>
</tr>
<tr>
<td>Motional resistance</td>
<td>R_1</td>
<td>KΩ</td>
</tr>
<tr>
<td>Shunt capacitance</td>
<td>C_0</td>
<td>pF</td>
</tr>
</tbody>
</table>

The basic circuit can be resolved into equivalent resistive (R_e) and reactive (X_e) components.

Crystal Operating Mode
The equivalent crystal impedance varies with the frequency of oscillation. Figures 2 and 3 show the variation of the equivalent reactance, X_e, with respect to frequency for KDS’s DT-26 crystal. Figure 2 shows two points at which the crystal appears purely resistive.

Fig. 1. Equivalent Circuit of a Quartz Crystal

Fig. 2. Variation of Reactance Around Resonance Points
RTC Time-Base Oscillator

(points at which \(X_a = 0 \)). These points are defined as the series resonant (\(F_s \)) and anti-resonant (\(F_a \)) frequencies. Series resonant oscillator circuits are designed to oscillate at or near \(F_s \). Parallel resonant circuits oscillate between \(F_s \) and \(F_a \), depending upon the value of a parallel loading capacitor, \(C_L \). The Benchmarq RTC uses a parallel resonant oscillator circuit.

Series resonant oscillator circuits are designed to oscillate at or near \(F_s \). Parallel resonant circuits oscillate between \(F_s \) and \(F_a \), depending upon the value of a parallel loading capacitor, \(C_L \). The Benchmarq RTC uses a parallel resonant oscillator circuit.

Figure 3. Detailed Area of Parallel Resonance

When a crystal is operating at parallel resonance, it looks inductive in a circuit (see Figure 4). Frequency will increase as load capacitance decreases. The load capacitance is the dynamic capacitance of the entire circuit as measured or computed across the crystal terminals. In parallel circuit designs, the load capacitance should be selected to operate the crystal at a stable point on the \(F_s-F_a \) reactance curve as close to \(F_s \) as possible.

Figure 4. Parallel Resonance

\(C_{L1} \) and \(C_{L2} \) values are trimmed to provide approximately a load capacitance of 6pF across the crystal terminals, thus matching the specified load capacitance at which the crystal is calibrated to resonate at the nominal frequency of 32.768kHz. Referring to the impedance curve of Figure 3, “A” indicates the point of resistance when \(C_L \) equals the specified load capacitance of the crystal.

Time-Keeping Accuracy

The RTC time-keeping accuracy mostly depends on the accuracy of the crystal, even though other considerations may affect it. The accuracy of the frequency of oscillation depends on the following:

- Crystal frequency tolerance
Crystal Frequency Tolerance

The frequency tolerance parameter is the maximum frequency deviation from the nominal frequency (in this case, 32.768kHz) at a specified temperature, expressed in ppm of nominal frequency. The frequency tolerance, \(\Delta f/f \), should typically be around \(\pm 20\text{ppm} \) at 25°C, which is the case for the Grade A, DT-26 crystal.

Crystal Frequency Stability

The maximum allowable deviation from nominal frequency over a specified range is the stability tolerance or temperature coefficient. This factor depends upon the angle of cut, the width/length ratio, the mode of vibration, and harmonics. This factor is normally expressed in terms of ppm or % of nominal frequency. Figure 6 shows a typical curve of frequency variation with temperature for the KDS DT-26 crystal.

![Figure 6. Typical Temperature Characteristics](image)

Crystal Aging

Quartz crystal aging refers to the permanent change in operating frequency which occurs over time. The rate of change in frequency is fastest during the first 45 days of operation. Many factors affect aging, and the most common include the following: drive level, internal contamination, crystal surface change, ambient temperature, wire fatigue, and frictional wear. Drift with age is typically 4 ppm for the first year and 2 ppm per year for the life of the DT-26 crystal.

Load Capacitance

For a parallel resonant calibrated crystal, the crystal manufacturer specifies the load capacitance at which the crystal will “parallel” resonate at the nominal frequency. As the graph in Figure 3 displays, increasing the effective load capacitance by hanging additional capacitors on either of the RTC’s X1 or X2 pins will effectively lower the resonant frequency, point “A,” toward Fs. The resonant frequency with load capacitance, \(F_L \), is given by the following:

\[
F_L = F_s \left(1 + \frac{C_L}{C_s + C_L}\right)
\]

where \(C_L \) is the effective load capacitance across the crystal inputs, which includes any stray capacitances.

Allowing for capacitance due to board layout traces leading to the X1 and X2 pins, the RTC oscillator circuit is trimmed internally to provide an effective load capacitance of less than 6pF. Therefore, if the X1 and X2 pins were bent up from the PCB traces and a crystal specified with a \(C_L \) of 6pF was soldered directly to these pins, the clock should oscillate approximately 40-50 ppm faster than the nominal frequency of 32.768kHz.

Load Capacitance Trimming

If the RTC clock is running faster than the nominal frequency, a small trim capacitor (preferably <8pF) should be placed from the X2 pin to ground to move the resonant point closer to the nominal frequency. The graph of Figure 7 shows the variation of frequency with additional load capacitance on the RTC X2 pin.

![Figure 7. Frequency Variation Versus Load Capacitance](image)
RTC Time-Base Oscillator

The trimming capacitors normally should be ceramic. Ideally, use a COG- or NPO-type of ceramic or a polyester film capacitor, as these are better suited for timing applications.

Here is a practical rule of thumb deriving from the data in Figure 7: for every additional 1.54pF capacitance on the X2 pin, the frequency will decrease by 0.8Hz or a Δf/f of -24.4 ppm around 32.768kHz.

Using Crystals With CL Other Than 6pF

Sometimes, a crystal with a CL specification other than 6pF is used, either because of availability or a stocking issue. Again, because Benchmarq’s RTCs are trimmed for use with CL = 6pF crystals, timing accuracy will most likely be outside ±20 ppm.

A popular alternative is a crystal with a CL = 12.5pF. By using a crystal with this load capacitance specification, the RTC will resonate much closer to the anti-resonant frequency, Fa. Thus, a larger trim capacitor is necessary. Benchmarq suggests using a 10pF from the X2 pin to ground in order to achieve ±30 ppm accuracy. Please take into consideration board trace capacitances.

Parallel trim capacitors can also be used, which would place the trim capacitor directly across the X1, X2 pins. Parallel trim capacitors, however, require an increased voltage on the BC pin to maintain oscillations in battery backup mode. Hence, Benchmarq still suggests using a trim capacitor from the X2 pin to ground.

Table 2 represents typical data taken with a bq3285 using a KDS crystal with a CL = 12.5pF and parallel trim capacitors. The leads were bent up, directly connecting the crystal to them, so a 2-3pF capacitor from both the X1, X2 pins to ground were added to simulate trace capacitances. The part was monitored by using an HP5370B Universal Time Interval Counter tied to the SQW output pin.

This data shows that a 6.8pF parallel trim capacitor has better ppm performance, but the oscillator was not sustained in battery back-up mode at the minimum battery voltage of 2.5V. Benchmarq suggests using a 4.7pF parallel trim capacitor if using a crystal with a CL = 12.5pF.

Board Layout

Given the high-input impedance of the crystal input pins X1 and X2, take care to route high-speed switching signal traces away from them. Preferably use a ground-plane layer around the crystal area to isolate capacitive-coupling of high-frequency signals. The traces from the crystal leads to the X1, X2 pins must be kept short with minimal bends. A good rule of thumb is to keep the crystal traces within 5mm of the X1, X2 pins.

Table 2. Parallel Trim Capacitance Data

<table>
<thead>
<tr>
<th>Cp</th>
<th>BC Voltage</th>
<th>ppm</th>
<th>Oscillator sustained</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8pF</td>
<td>2.1V</td>
<td>+7-10</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2.15V</td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2.5V</td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>3.0V</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4.7pF</td>
<td><2.15V</td>
<td>+15-20</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2.15V</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2.5V</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>3.0V</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
1. Cp = Parallel trim capacitor
2. BC voltage = Voltage present on BC pin
3. ppm = ppm data
4. Osc. sustained = Oscillator running in battery backup mode?
5. Start-up = Did oscillator start up on power-up?

Finally, place a 0.1µF ceramic by-pass capacitor close to the RTC VCC pin to provide an improved supply into the clock.

Drive Level

The drive level is the power dissipated through a crystal in an operating circuit. A drive level (measured in microwatts) which is too high or too low can cause undesirable effects. If the level is too high, it can cause the oscillator frequency to change, cause a fracture of the quartz element, or lead to a permanent shift in frequency output. If the drive level is too low, it can prevent oscillator function completely. Generally, keep the drive level at the minimum level required for high stability and adequate oscillator output. Benchmarq designs RTCs for minimum drive level for reduced power dissipation to achieve maximum battery life when oscillating in battery backup mode.

Measuring for Accuracy

When checking for clock accuracy, use either a scope or a universal time counter connected to the SQW output pin.

Do not place probes on the X1 or X2 pins to check for oscillations, as this action may load the crystal and reduce the output amplitude or prevent the oscillator from functioning.

Aug. 1996
Oscillator Start-up

Barring accuracy issues, the RTC will oscillate with any 32.768kHz crystal. When hooked to the X1, X2 pins in certain configurations, however, passive components can lead to oscillator start-up problems through the following:

- Excessive loading on the crystal input pins X1, X2.

 Table 2 shows a 6.8pF parallel trim cap trimming in a 12.5pF C1 crystal. The 6.8pF trim cap provides for better ppm accuracy, but the oscillator will not oscillate in battery backup mode with the minimum battery voltage of 2.5V, even though the oscillator will start-up upon power-up.

- Use of a resistive feedback element across the crystal.

 Benchmarq builds the feedback element into the RTC for start-up, so no resistive feedback external to the part is required.

Also, for start-up, a voltage within the Vbc voltage range must be present on the BC pin upon power-up for the oscillator to start-up. This voltage provides biasing to the oscillator circuit for operation.

Figure 8 shows “good” and “bad” circuit configurations for the RTC oscillator.

References

1. KDS America, Quartz Crystals and Oscillators User’s Guide
RTC Time-Base Oscillator

Suggested Crystals and Manufacturers

Here are a few suggestions for 32.768kHz crystals for use with Benchmarq RTCs:

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>KDS DT-26</th>
<th>Epson C-002RX</th>
<th>Epson MC-306</th>
<th>Epson MC-405/406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>f</td>
<td>32.768kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>Storage T<sub>T<sub>STG</sub></sub></td>
<td>-30°C to +70°C</td>
<td>-10°C to +60°C</td>
<td>-55°C to +125°C</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td></td>
<td>Operating T<sub>T<sub>OPR</sub></sub></td>
<td>-10°C to +60°C</td>
<td>-10°C to +60°C</td>
<td>-40°C to +85°C</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Maximum drive level</td>
<td>GL</td>
<td></td>
<td></td>
<td></td>
<td>1.0µW</td>
</tr>
<tr>
<td>Soldering condition</td>
<td>T<sub>SOL</sub></td>
<td>240°C-250°C 10s maximum</td>
<td>under 280°C within 5s</td>
<td>under 230°C within 3 min.</td>
<td>under 230°C within 3 min.</td>
</tr>
<tr>
<td>Frequency tolerance</td>
<td>Δf/f</td>
<td>Grade A: ±20 ppm</td>
<td>±20 ppm</td>
<td>±20 ppm or ±50 ppm</td>
<td>±20 ppm or ±50 ppm</td>
</tr>
<tr>
<td>Peak temperature (frequency)</td>
<td>ΘT</td>
<td>25°C ± 5°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient (freq.)</td>
<td>a</td>
<td>-0.04 ppm / °C² max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load capacitance</td>
<td>C<sub>L</sub></td>
<td>6pF (please specify)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series resistance</td>
<td>R<sub>1</sub></td>
<td>45kΩ max.</td>
<td>50kΩ max.</td>
<td>50kΩ max.</td>
<td>50kΩ max.</td>
</tr>
<tr>
<td>Motional capacitance</td>
<td>C<sub>1</sub></td>
<td>2.6fF typ.</td>
<td>2.0fF typ.</td>
<td>1.8fF typ.</td>
<td>2.0fF typ.</td>
</tr>
<tr>
<td>Shunt capacitance</td>
<td>C<sub>0</sub></td>
<td>1.1pF typ.</td>
<td>0.8pF typ.</td>
<td>0.9pF typ.</td>
<td>0.85pF typ.</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>IR</td>
<td></td>
<td></td>
<td>500MΩ min.</td>
<td></td>
</tr>
<tr>
<td>Aging</td>
<td>fa</td>
<td>-</td>
<td>±5 ppm/year max.</td>
<td>±3 ppm/year max.</td>
<td>±3 ppm/year max.</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>S.R.</td>
<td>-</td>
<td>±5 ppm max.</td>
<td>±5 ppm max.</td>
<td>±5 ppm max.</td>
</tr>
</tbody>
</table>

KDS America
10901 Granada Lane
Overland Park, Kansas 66211
Tel: (913) 491-6825
Fax: (913) 491-6812

Epson America, Inc.
20770 Madrona Avenue
P.O. Box 2842
Torrance, California 90509-2842
Tel: (310) 787-6300
Fax: (310) 782-5320

Epson Korea, Inc.
1OF. KLI 63 Building
60 Yoido-Dong Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-6027
Fax: (02) 784-0087

Epson Taiwan, Inc.
10F, No. 287, Nanking E. Road
Sec. 3, Taipei, Taiwan, ROC
Tel: (02) 717-7360
Fax: (02) 718-9366

Epson Hong Kong Limited
20/F Harbour Centre
25 Harbour Road
Wancha, Hong Kong
Tel: (852) 2585-4600
Fax: (852) 2827-4346, 2152

Epson Singapore PTE LTD
No. 1 Raffles Place
OUB Centre #25-00
Singapore 048616
Tel: 5330477
Fax: 5345109

Aug. 1996
RTC Time-Base Oscillator

External Dimensions

- DT-26, C-002RX

(Unit: mm)
RTC Time-Base Oscillator

External Dimensions and Soldering Patterns

- MC-306

(Unit: mm)

Do not connect #2 and #3 to external device.
External Dimensions and Soldering Patterns

■ MC-405/406

(Unit : mm)

Do not connect #2 and #3 of MC-406 to external device.
A first digit of No. means:
3xxx = MC-405
6xxx = MC-406

Aug. 1996
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated