The design of a programmable electronic circuit breaker is shown below which utilizes the UC3843A control IC to facilitate a high speed turn-off following an overcurrent condition. This low cost, industry standard IC contains the required protection features and drive capability in a single 8 pin device.

CIRCUIT OPERATION

Power to the controller is provided by a simple, low cost 60Hz transformer from the AC line which delivers 12 VAC at the secondary. The output current is determined primarily by the relay used with an additional 10 milliamps, or so, drawn by the IC. Undervoltage lockout prevents any operation until 10 VDC is obtained across capacitor C1, when the UC3843A will turn on. The PWM output at pin 6 goes high which drives the relay ON and switches the load across its respective power source. The load current is sensed by the current transformer T2, multiplied by its turns ratio (N) and develops a voltage across the sense resistor R4. This resistor is scaled to delivery 1 volt maximum at the full load current and is one input to the PWM comparator.

While the output at pin six is high transistor Q1 is also turned ON which disables the IC’s oscillator, locking the output high until toggles by the PWM. A 10k resistor (R5) to the supply voltage (pin 7) supplies bias to Q1 after the output has gone low, providing a latched OFF condition. This can easily be reset by pulling Q1’s gate low through 1k ohms to ground as shown.

The other input to the PWM comparator is represented by the voltage at pin 1, the error amplifier output which can be adjusted by resistor R2. Internally, this voltage is reduced by two diode drops then attenuated to one-third its amplitude. The PWM circuitry compares this voltage with that of the current sense input at pin 3. When the current sense input exceeds the threshold set by resistor R2, the comparator is tripped and the output at pin 6 is latched OFF.
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated