Boosting Supply Select Hysteresis on the TPS2350

James Bird

System Power

ABSTRACT

This Application Note describes a method for increasing hysteresis in the TPS2350 supply select comparator. Hysteresis greater than the default value of 400 mV might be required due to dynamic loads, poorly regulated supplies, resistive supply lines, or simply to reduce switching between primary and back-up supply. The example given shows how to increase the hysteresis in a −48-V system from 400 mV up to 3.2 V.

Theory of Operation and Application

Figure 1 shows a typical TPS2350 application which has been modified with six additional components to set the hysteresis at a value greater than the nominal 400 mV. The additional components are R4 – R7, Q4, and Q5.

The four resistors are configured as a pair of identical voltage dividers. Matching the voltage dividers provides for the same hysteresis regardless of which supply is turning on. Connecting the low end of the dividers to source ensures that at least one input of the supply select comparator will be less than 6 V above source. This is necessary for proper operation of the TPS2350.

Since the supply select comparator inside the TPS2350 has a threshold of 400 mV the resistors are chosen to present 400 mV to the supply select comparator when the voltage difference between supplies reaches the desired switch level. The input impedance to the supply select comparator is approximately 400 kΩ to 1.3 V above \(V_{\text{SOURCE}} \) for the on channel, and 315 kΩ to 1.3 V above \(V_{\text{SOURCE}} \) for the off channel.

Using the standard 400-mV hysteresis, the Q2 and Q3 body diodes would never be forward biased by more than 400 mV, which is not sufficient to turn them on. In this extended hysteresis configuration blocking diodes are required and that is the purpose of Q4 and Q5. They prevent current from flowing in the off channel even if the voltage difference between source and \(V_{\text{A(input)}} \), or source and \(V_{\text{B(input)}} \) is sufficient to turn on the body diode of Q2 or Q3.

Design of extended hysteresis circuits for the TPS2350 must ensure that the hysteresis does not become greater than the threshold voltages (\(V_{\text{TH}} \)) of the FETs being used. Were that to occur the channel which is supposed to be off could start conducting.
Component Selection

Selecting the resistors for a specific hysteresis is accomplished using the following formulae;

- \(R4 = R5 \)
- \(R6 = R7 \)
- \(30 \, \text{k}\Omega < (R4 + R6) < 200 \, \text{k}\Omega \)
- \(V_{HYST} < V_{TH} \)
- \(R4 = (V_{HYST} \times R6)/.4 – R6 \)
- \(V_{TH} = \text{FET Threshold Voltage (V}_{GS} \)
- \(V_{HYST} = \text{Desired Hysteresis Level} \)

These equations neglect the finite input impedance of the supply select comparator but as long as \((R4 + R6) < 200 \, \text{k}\Omega \), it does not significantly affect accuracy. Examination of the resistor selection process and experimental data in Graph 1 show that by keeping \((R4+R6) \) less than 200 kΩ, it is possible to ignore the input circuitry of the TPS2350.

Figure 1. TPS2350 Configured With Boosted Hysteresis
Summary

A method for increasing supply select hysteresis from 0.4 V to any value less than the threshold voltages of the external FETs has been presented. Two additional external FETs and four additional resistors are required.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated