ABSTRACT
This application report presents a strategy for high-speed and economical calibration and production programming of the bq27500/1 single-cell gas gauge chipset. Flowchart examples are provided, along with step-by-step instructions for preparing a calibration data set that is required when creating the Golden Data Flash Image (DFI) that is programmed into all bq27500/1 devices at the original equipment manufacturer (OEM) production line.

This is applicable to all system-side, single-cell gas gauge devices that use EVSW and the bqEASY plug-in for golden file generation. Newer products may use different software tools to generate a golden file (such as Battery Management Studio/bqStudio), but the concepts and flow are similar. Furthermore, the production programming flow detailed in Section 6 can be replaced for any single-cell gauge with the Flashstream procedure outlined in the application report entitled Updating the bq275xx Firmware at Production (SLUA541).

1 Introduction
The bq27500/1 gas gauge is built with new technology and a new architecture for both data flash access and calibration. With this new architecture, unit production cost and capital equipment investment can be minimized, as there is no longer a need to perform a learning cycle on each pack. A single Golden DFI can be used to program each bq27500/1 in production. Also, the calibration method is quick and simple because most of the calibration routines are built into the firmware of the target device or can be based on average values.
2 Determining Data Flash Constants

To configure the bq27500/1 for a given application, the data flash set must be programmed depending on the cell, application system, and charger. The application report Configuring the bq27500 Data Flash (SLUA432) gives a detailed description of all the data flash constants that the user can modify. All bq27500/1 integrated circuits (IC) for an application must contain the same data flash values.

The DFI contains all flash values and is used at the system application production line to program the bq27500/1. The DFI is programmed using I^2C communication with the bq27500/1. Creating the DFI can be summarized with the process depicted in Figure 1.

Figure 1. DFI Creation Flow
STEP 1: Characterize the Calibration Process

Devices of bq27500/1 single-cell gas gauges can be quickly and easily calibrated. With the Impedance Track™ devices, most calibration routines have been incorporated into firmware algorithms, which can be initiated with I²C commands. The hardware necessary for calibration is also simple. One current source, one voltage source, and one temperature sensor are all that is required. The stability of the sources is important, not so much the accuracy. However, accurately calibrated reference measurement equipment should be used for determining the actual arguments to the function. For periodic voltage measurement, a digital voltmeter with better than a 1-mV accuracy is required.

The recommended strategy for bq27500/1 calibration is to perform the calibration using 20 to 30 final application systems containing the bq27500/1 IC. All the calibration flash values are to be recorded and averaged among the 20 to 30 samples taken. The average values are the ones to be used when creating the DFI file needed for production. At time of calibration, access is required to the I²C pins, both ends of the sense resistor, and battery power. The calibration consists of performing coulomb counter offset, current gain, and temperature offset. The Evaluation Software (EVSW) is used to perform all calibration. By using the EVSW, it allows verification of the affected data flash values due to calibration (see Figure 2).

Perform the following calibration tests on each of the system samples:

CC Offset Calibration—Select the *CC Offset Calibration checkbox*. Then, click on the *Calibrate Part as indicated below* button (Figure 3), and wait for the EVSW to indicate that the calibration is completed. Read back the updated CC Offset data flash value by going to the Data Flash screen in EVSW and selecting the Calibration tab. Press the *Read All* button so that all the data is refreshed on the screen.

Temperature Calibration—Select the *Temperature Calibration* checkbox. Write the actual temperature to which the thermistor is exposed, obtained by the reference equipment measurement. Click on the *Calibrate Part as indicated below* button, and wait for the EVSW to indicate that the calibration is completed. Read back, and record the Ext Temp Offset value from the Data Flash screen.

Figure 2. bq27500 EVSW Calibration Data Flash Screen
Pack Current Calibration—Select the Pack Current Calibration checkbox; apply a current to flow through sense resistor; and write the actual current measured by meter. Click on the Calibrate Part as indicated below button, and wait for the EVSW to indicate that the calibration is completed. Note that a negative sign indicates current in the discharge direction. Read back, and record the updated CC Gain and CC Delta data flash values by going to Data Flash screen in EVSW and selecting the Calibration tab. Press Read All button so that all the data is refreshed on the screen.

The voltage and board offset calibration are not required unless there was poor layout that would add any offsets to voltage or current measurements. The EVSW does provide the means of calibrating these parameters. To perform board offset, it is expected that no loads are applied during calibration.

The voltage and board offset calibration are not required unless there was poor layout that would add any offsets to voltage or current measurements. The EVSW does provide the means of calibrating these parameters. To perform board offset, it is expected that no loads are applied during calibration.

The average Ext Temp Offset, CC Gain, and CC Delta values are entered into the DFI file in Step 2.

Figure 3. bq27500 EVSW Calibration Screen

The average Ext Temp Offset, CC Gain, and CC Delta values are entered into the DFI file in Step 2.
4 **STEP 2: Using bqEASY for Production Preparation**

The bqEASY (see Figure 4) is a tool embedded within the EVSW that provides detailed instructions and automates processes that on completion creates the DFI that is used at production to program all bq27500/1 for a given application.

![Figure 4. bqEASY](image)

The data flash of the bq27500/1 is configured based on a questions and answers session within the Configure section of bqEASY. The questions involve topics specific to the battery pack, the charger, and the system application.

At the Calibrate session of bqEASY, it is expected that the user navigates to the Data Flash section of the EVSW and enters the average calibrations obtained from the process described in the Characterize the Calibration Process section of this document.

The Chemistry session in bqEASY is a valuable tool that allows the user to select the chemistry of their battery pack from a database. If the user does not know the chemistry of its battery pack, then the bqEASY gives instructions on testing the battery for determining the chemistry. The discharge during the test is automated. For automated discharge, a setup as described in Figure 5 is required. The load must be selected so that it has a C/5 rate when turned on. During automated discharge, the EV2300 board controls when to enable and disable the discharge, allowing the necessary relaxation periods for OCV measurements. Once the chemistry is determined, the data flash of bq27500/1 is updated so that it contains the proper OCV data that is characteristic of the selected chemistry. Having proper chemistry data is integral for the Impedance Track algorithm performing accurately.
The final session of the bqEASY is for running a learning cycle so that Qmax and the impedance tables are updated. The bqEASY provides step-by-step instructions on how to perform the learning cycle. By having learned Qmax and the impedance values, the DFI can be created so that when used to program bq27500 ICs in production, a learning cycle is unnecessary before a device can perform accurate battery fuel gauging as of the first cycle in the system.
7

Figure 6. bqEASY Process Flowchart

5 5 5 5 5 5 5 5

STEP 3: Data Flash Review

While following the actual steps of bqEASY, the tool prompts the user to review the data flash constants for advanced configurations that might not have been addressed by bqEASY. The application report Configuring the bq27500 Data Flash (SLUA432) defines all the bq27500/1 data flash constants. Refer to this document when reviewing the data flash configuration against the application needs.

To modify the data flash constants, proceed to the Data Flash screen of the evaluation software and search for the desired data flash value to be modified, and change accordingly.
STEP 4: Writing the DFI at Production

System designers must ensure that there is access to the I₂C lines of the bq275xx and battery power access at the time of writing the DFI in production. It is expected that the OEMs add the Write DFI step within their final complete system test that verifies the product to be functional for release to market. The flowchart in Figure 8 shows the steps that must be followed to write the DFI created with bqEASY. System test developers can use the flowchart to call I₂C commands with their test setup and program all the flash of the bq275xx embedded in the application system.

The last step of the bq275xx configuration at production is to give the RESET (0x0041), IT ENABLE (0x0021), and SEALED (0x0020) commands. These commands are given by writing the corresponding two-byte data value into the CONTROL register (command 0x00 and 0x01) using I₂C.

![Flowchart](image-url)

Figure 7. bq275xx Production Flow
Start Read and Erase First Two Rows of Instruction Flash (IF)

Read the Flash Image into a byte array such as yDataFlashImage[0 to 0x3FF]

Write Command 0x00 and Data 0x0F00

Create a 96 bytes array from each row
yiFRowData_0[0 to 95]
yiFRowData_1[0 to 95]

iRow = 0

Write command 0x00 and Data 0x00

Write command 0x01 and Data 0x00+iRow
Write command 0x02 and Data 0x00

Write command 0x64 and Data 0x00+iRow
Write command 0x65 and Data 0x00

I2C device address 0xAA is used. Places bq275xx into ROM Mode.

I2C device address 0x16 is used for all remaining communication. Read first two rows of IF

Set IF row address to 0x0000 and column address to 0 and set the data to be read as 96 byte

Checksum consists of 0x00

Checksum required to complete Read command.

Read 96 bytes from data register address 0x04 to 0x63 into yiFRowData_iRow

20 msec delay

iRow = iRow+1

Read first row and then read second row, save the data into non-volatile system memory

Read 96 bytes from data register address 0x04 to 0x63 into yiFRowData_iRow

20 msec delay

iRow = iRow+1

Read first row and then read second row, save the data into non-volatile system memory

Read first row and then read second row, save the data into non-volatile system memory

Read register 0x66, Data = 0x00?

YES

NO

Read register 0x66, Data = 0x00?

YES

NO

See figure 9 for DFI programming flow

Figure 8. Instruction Flash First Two Row Record and Erase Flow
Start Writing Image

1. **DFI_Checksum = 0**

2. **Write command 0x00 and Data 0x0C**

3. **Write command 0x04 and Data 0x63**

 I2C device address 0x16 is used for all remaining communication. Send data flash Mass Erase command.

4. **Write command 0x64 and Data 0x0D**

5. **Write command 0x65 and Data 0x01**

 Setup for Mass Erase command.

 Checksum consists of 0x0C+0x83+0xDE.

 Checksum required to complete Mass Erase command.

 If register 0x66 does not return 0x00 then there is no data integrity.

 The total number of rows is determined by total data flash size (0x0400) divided by 32 bytes per row.

 Setup for Data Flash Checksum command.

6. **200 msec delay**

 Read register 0x66, Data = 0x00?

 YES

 iRow = iRow + 1

 iRow = 0x0400 / 32?

 YES

 Write command 0x00 and Data 0x08

 Write command 0x01 and Data iRow

 This command indicates the row to operate in

 Write command 0x04 and yRowData array

 Checksum=[0x0A+iRow+sum(yRowData)] mod 0x10000

 DFI_Checksum=[DFI_Checksum + sum(yRowData)] mod 0x10000

 Write command 0x64 and LSB of Checksum

 Write command 0x65 and MSB of Checksum

 2 msec delay

 Read register 0x66, Data = 0x00?

 YES

 iRow = iRow + 1

 iRow = 0x0400 / 32?

 YES

 Write command 0x00 and Data 0x08

 Write command 0x01 and Data 0x08

 Write command 0x64 and Data 0x08

 Write command 0x65 and Data 0x00

 20 msec delay

 Read Data Register 0x04 and 0x05 and save to DFI_Checksum_RB

 DFI_Checksum = DFI_Checksum_RB?

 YES

 End Writing Image

Figure 9. DFI Write Flow
STEP 4: Writing the DFI at Production

Figure 10. Instruction Flash First Two Row Reprogram Flow

1. **iRow = 1**
2. Copy corresponding 96 bytes of iRow IF data from system memory into yIFRowData_iRow[0 to 95]
3. **Write command 0x00 and Data 0x02**
4. **Write command 0x01 and Data 0x00+iRow**
5. **Write command 0x02 and Data 0x00**
6. **Write command 0x04 and yIFRowData_iRow array**
7. Checksum=[0x02+iRow sum(yIFRowData_iRow)] mod 0x10000
8. **Write command 0x64 and LSB of Checksum**
9. **Write command 0x65 and MSB of Checksum**
10. 20 msec delay
11. **Read register 0x66, Data = 0x00?**
 - NO
 - YES
12. **iRow = iRow-1**
13. **NO**
14. **YES**
15. **Program second row then program first row**
16. **This command exits from ROM Mode.**
17. **Command 0x64 and 0x65 are for LSB and MSB of Checksum respectively**
18. **Checksum required to complete Exit ROM Mode command**
19. **End Program IF Row**

If register 0x66 does not return 0x00 then there is no data integrity.
Revision History

Changes from E Revision (January 2012) to F Revision

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Changed bq27500 to bq275xx in Section 6</td>
<td>8</td>
</tr>
<tr>
<td>Changed Figure 8</td>
<td>9</td>
</tr>
</tbody>
</table>

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated