ABSTRACT

Modern day electronic devices, such as cell phones and MP3 players, can usually be powered with either an adapter or USB source through a single input connector using a mini USB cable. For a simple charger, without separate power paths for the system and the battery, the system (including the device transceiver) is powered directly from the battery. If the battery is deeply discharged, it has to be charged (at the low 100-mA USB current limit) to the minimum cell voltage at which time the device transceiver is able to communicate with the USB host to increase the current limit for the USB port. However, waiting for the battery to charge sufficiently to enable communication and thus enable a higher charge rate is only necessary if the device was indeed powered from a USB port and not an adapter.

To distinguish between the two input sources, the bq24050/2/5 features automatic AC/USB detection. This feature provides for the use of a single input connector which allows an adapter to charge the discharged cell to a useable voltage sooner than with the default 100-mA USB setting. This application report discusses the details of this time-saving feature.

1 bq24050/2/5 Detection Features

The bq24050/2/5 has AC/USB detection on power up so that the charger can decide to remain at the default, safe 100-mA level, for a USB or unknown source, or to go to the programmed fast-charge current if an adapter is detected. This detection routine is run on every power up of the charger. The charger’s D+/D– connection is then disconnected, prior to any device transceiver-to-USB host communication, to avoid any interference on the USB bus. This advance detection of an adapter allows a discharged cell to charge faster with full system access sooner, while avoiding overloading a USB source. Once the device transceiver communicates with the personal computer’s (PC) USB host, the ISET2 pin can be used to set the negotiated 100-/500-mA input current limit level.

2 Mechanism

The bq24050/2/5 charger uses the D+/D– lines to determine the power source type by measuring the voltage levels on each line. Knowing the configuration of the adapter and USB D+/D– lines and their voltages indicates what source is present. The charger detection routine defines two classifications of sources: adapter or nonadapter. Detecting an adapter allows charging at the programmed fast-charge level, whereas detecting a USB source or unknown source only allows charging at 100 mA for safety reasons. The key to an accurate source detection is knowing that the adapter has its D+ and D– lines tied together with less than 200 Ω of resistance, whereas the USB port has each line (D+/D–) pulled to ground through a 15-kΩ resistor as shown in Figure 1(a) and (b).
As soon as power is applied, the bq24050/2/5 biases its D+ line to 0.6 V with a 200-µA current source and its D− line to ground with a 100-µA current sink. See Figure 2.

Once powered up, the device transceiver detects the input power and then pulls either the D+ or D− line high, through a 1.5-kΩ resistor to ~3 V, indicating that a full-speed or low-speed device is present, respectively. This is the first signal to the PC’s USB host that a transceiver is on line and wants to communicate. The PC’s USB host has to wait at least 100 ms to begin communication. The bq24050/2/5’s detection routine always completes before this wait time ends, allowing it to disconnect from the USB bus before communication begins.

If the transceiver is dead due to a discharged battery (or if no transceiver is present), the bq24050/2/5 automatically runs the detection routine after receiving a trigger, assuming the input connections are secure (any contact bounce has dampened out), and determines the source type.
After the input power has been applied, three actions trigger the adapter detection routine to start:

- **D+** pulled up to ~3 V (full-speed USB device)
- **D–** pulled up to ~0.6 V (D+/D– lines shorted) or ~3 V (low-speed USB device)
- No line pulled up above ~0.6 V and the 500-ms timer expires (transceiver not powered or transceiver absent or D+/D– lines floating).

The detection routine begins when it measures the D+ and D– voltages to determine if the D+ and D– inputs are shorted (have approximately the same voltage) and are pulled up to at least ~0.6 V. If this is the case, then an adapter source is detected. For any other measurements, the input source is assumed to be a USB source and defaults to the 100-mA input current limit level. Floating D+/D– lines default to the 100-mA current limit, as the D– line does not go above 0.6 V due to the current sink on that pin pulling it to ground.

This detection routine takes about 60 ms to complete. Once completed, it latches the input current limit to the programmed ISET value if an adapter source was detected and to the 100 mA level if a nonadapter source was detected. The IC’s connection to the D+/D– line is then disconnected before the PC’s USB host starts communication.

After the bq24050/2/5 has disconnected from the USB bus, the device’s host can change the input current limit setting by changing the state of the ISET2 pin, thus unlatching the detection setting. Once toggled, the ISET2 pin has three states: HI: 500-mA input current limit; Floating (~1 V): 100-mA input current limit; LOW: Input current limit programmed by the ISET pin.

The bq24050/2/5 gives the added flexibility of allowing a device without a transceiver to charge at a fixed, safe, 100-mA level. Without this feature, a USB source cannot be safely used, unless the charge current was always programmed to a low level.

Figure 3 through Figure 6 are examples of typical power-up D+/D– routines with different configurations. **Figure 6** shows the D+ line pulled up indicating a full-speed transceiver is on line wanting to communicate with the host followed by a delay of ~130 ms before the host starts its communication.

![Graph showing D+/D– Detection for Adapter Hot Plug](image-url)
No signal detected on D+ or D−. After 500ms, the detection routine is forced to run.

Figure 4. D+/D− Detection for Unknown Source Hot Plug

(Device transceiver is "dead") After 500 ms, the detection routine is forced to run.

Figure 5. D+/D− Detection for USB Hot Plug no Pullup
3 Conclusion

The bq24050/2/5’s D+/D– detection routine is a useful feature for devices with a discharged battery or with a dead or missing device transceiver. This allows the battery to fast charge immediately, if an adapter is detected, allowing full use of the device sooner. The bq24050/2/5 avoids interference on the USB bus by running its detection routine and then disconnecting from the D+/D– inputs prior to the USB host starting its communication with the device transceiver. A simple mobile design that normally only has an adapter source can be sold as a USB-friendly charging device allowing the bq24050/2/5 to detect the USB source and charge at the 100-mA level without ever communicating with the host. The same assumption is made as with any dead battery charging: that no issues occur if 100 mA are pulled from the USB source prior to communication. Bear in mind that this is an industry assumption and not a certainty.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are not authorized for use in military/aerospace applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics & Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated