Application Note

UCC28950/UCC28951 600-W, Phase-Shifted, Full-Bridge Application Note

4 Texas Instruments

Michael O'Loughlin

Abstract

In high-power server applications to meet high-efficiency goals of greater than 92% some power-supply designers have found it easier to use a phase-shifted full-bridge (PSFB) converter (Figure 2-1). This is because the PSFB converter can obtain zero-voltage switching on the primary side of the converter reducing switching losses and increasing overall system efficiency. The purpose of this application note is to review the design of a 600-W, phase-shifted, full-bridge converter, using the UCC28950 or the newer UCC28951 PSFB controller. The design specifications for this design are presented in Table 1-1. Hopefully this information will aid other power supply designers in their efforts to design an efficient phase-shifted, full-bridge converter. Also note there is an Excel Design Tool that goes along with this application note as well to aid in the design process.

Table of Contents

1 Design Specifications2
2 Functional Schematic 2
3 Power Budget 3
4 Transformer Calculations (T1) 3
5 QA, QB, QC, QD FET Selection6
6 Selecting L_{s} 7
7 Output Inductor Selection (Lout) 7
8 Output Capacitance (Cout) 8
9 Select FETs QE and QF 9
10 Input Capacitance (C_{IN}) 11
11 Setting Up the Current Sense (CS) Network (CT, RS, R RE, D_{A}) 12
12 Voltage Loop and Slope Compensation 13
13 Setting Turn-on Delays to Achieve Zero Voltage Switching (ZVS) 16
14 Turning SR FETs-off Under Light Load Conditions 21
15600 W FSFB Detailed Schematic and Test Data 21
16 References 25
17 Revision History. 25
List of Figures
Figure 2-1. UCC28950/UCC28951 Phase-Shifted, Full-Bridge Functional Schematic. 2
Figure 4-1. T1 Primary and QE and QF FET Currents 4
Figure $9-1 . \mathrm{V}_{\mathrm{g}}$ vs. Q_{g} for QE and QF FETs 10
Figure 12-1. Loop Gain and Loop Phase 15
Figure 13-1. $\mathrm{t}_{\mathrm{ABSET}}$ to Achieve Valley Switching at Light Loads. 18
Figure 13-2. $\mathrm{t}_{\text {CDSET }}$ to Achieve Valley Switching at Light Loads 19
Figure 15-1. Daughter Board Schematic. 21
Figure 15-2. Power Stage Schematic 22
Figure 15-3. 600-W Phase Shifted Full Bridge Efficiency 23
Figure 15-4. Q4g Q4 ${ }_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, I IOUT $=5 \mathrm{~A}$ 23
Figure $15-5$. Q3 $_{\mathrm{g}} \mathrm{Q} 3_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$. 23
Figure 15-6. Q4 ${ }_{\mathrm{g}}$ Q4 ${ }_{\mathrm{d}}, \mathrm{V}_{\text {IN }}=390 \mathrm{~V}$, I $\mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$ 24
Figure 15-7. $\mathrm{Q3}_{\mathrm{g}} \mathrm{Q}_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$ 24
Figure $15-8$. Q $_{\mathrm{g}}$ Q4 $\mathrm{d}_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, I IOUT $=25 \mathrm{~A}$ 24
Figure 15-9. $\mathrm{Q} 3_{\mathrm{g}} \mathrm{Q} 3_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=25 \mathrm{~A}$ 24

Figure $15-10$. Q4 $_{\mathrm{g}} \mathrm{Q} 4_{\mathrm{d}}, \mathrm{V}_{\text {IN }}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=25 \mathrm{~A}$.
Figure 15-11. $\mathrm{Q3}_{\mathrm{g}} \mathrm{Q} 3_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, I IUUT $=25 \mathrm{~A}$.

List of Tables

Table 1-1. Design Specifications

Trademarks

All trademarks are the property of their respective owners.

1 Design Specifications

Table 1-1. Design Specifications

Description	Min	Typ	Max
Input Voltage	$370 \mathrm{~V}\left(\mathrm{~V}_{\text {INMIN }}\right)$	$390 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}\right)$	410 V (Vinmax)
Output Voltage ($\mathrm{V}_{\text {OUT }}$)	11.4 V	$12 \mathrm{~V}\left(\mathrm{~V}_{\text {OUT }}\right)$	50 V
Continuous Output Power (Pout)			600 W
Allowable $\mathrm{V}_{\text {Out }}$ Transient			600 mV ($\mathrm{V}_{\text {TRAN }}$)
Full Load Efficiency	93\% (n)	94\%	
Inductor (Lout ${ }^{\text {) Switching Frequency }}$		$200 \mathrm{kHz}\left(\mathrm{f}_{\mathrm{S}}\right)$	

2 Functional Schematic

Figure 2-1. UCC28950/UCC28951 Phase-Shifted, Full-Bridge Functional Schematic

INSTRUMENTS
www.ti.com

3 Power Budget

To reach the efficiency goal in this PSFB design, careful consideration needs to be taken in selecting electrical components. The devices need to be selected based voltage rating, current rating and power dissipation. The initial step in this design process is to set a power budget ($\mathrm{P}_{\text {BUDGET }}$) which the total losses of the electrical components selected for the design cannot exceed.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BUDGET}}=\mathrm{P}_{\text {OUT }} \times\left(\frac{1-\eta}{\eta}\right) \approx 45.2 \mathrm{~W} \tag{1}
\end{equation*}
$$

4 Transformer Calculations (T1)

The PSFB uses a transformer to deliver energy from the primary to the secondary. The voltage is stepped up or down through the transformers turns ratio (a1).

$$
\begin{equation*}
\mathrm{a} 1=\frac{\mathrm{N}_{\mathrm{P}}}{\mathrm{~N}_{\mathrm{S}}}=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\text {OUT }}} \tag{2}
\end{equation*}
$$

Estimated FET voltage drop (VRDSN):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{RDSON}}=0.3 \mathrm{~V} \tag{3}
\end{equation*}
$$

Select transformer turns based on 70% duty cycle ($\mathrm{D}_{\text {MAX }}$) at minimum specified input voltage. This will give some room for dropout if a PFC front end is used.

$$
\begin{align*}
& \mathrm{D}_{\mathrm{MAX}}=70 \% \tag{4}\\
& \mathrm{a} 1=\frac{\left(\mathrm{V}_{\text {INMIN }}-2 \times \mathrm{V}_{\text {RDSON }}\right) \times \mathrm{D}_{\mathrm{MAX}}}{\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\mathrm{RDSON}}} \approx 21 \tag{5}
\end{align*}
$$

Calculated typical duty cycle ($\mathrm{D}_{\text {TYP }}$) based on average input voltage.

$$
\begin{equation*}
\mathrm{D}_{\text {TYP }}=\frac{\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {RDSON }}\right) \times \mathrm{a} 1}{\left(\mathrm{~V}_{\text {IN }}-2 \times \mathrm{V}_{\text {RDSON }}\right)} \approx 0.66 \tag{6}
\end{equation*}
$$

To keep the RMS current in the output capacitance to a minimum Lout will be selected so the inductor ripple current ($\Delta \mathrm{I}_{\text {LOUT }}$) will be 20% of the DC output current. $\Delta \mathrm{I}_{\text {LOUT }}$ is needed to calculate transformer peak and RMS currents

$$
\begin{equation*}
\Delta \mathrm{I}_{\text {LOUT }}=\frac{\mathrm{P}_{\text {OUT }} \times 0.2}{\mathrm{~V}_{\text {OUT }}}=10 \mathrm{~A} \tag{7}
\end{equation*}
$$

Care needs to be taken in selecting a transformer with the correct amount of magnetizing inductance ($\mathrm{L}_{\mathrm{MAG}}$). The following equations calculate the minimum magnetizing inductance of the primary of the transformer (T1) to ensure the converter operates in peak-current mode control. If $\mathrm{L}_{\text {MAG }}$ is too small the magnetizing current could cause the converter to operate in voltage mode control instead of peak-current mode control. This is because the magnetizing current is too large, it will act as a PWM ramp swamping out the current sense signal across R_{S}.

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAG}} \geq \frac{\mathrm{V}_{\mathrm{IN}} \times\left(1-\mathrm{D}_{\mathrm{TYP}}\right)}{\frac{\mathrm{\Delta I}_{\mathrm{LOUT}} \times 0.5}{\mathrm{a} 1} \times \mathrm{f}_{\mathrm{S}}} \approx 2.76 \mathrm{mH} \tag{8}
\end{equation*}
$$

Figure $4-1$ shows T1 primary current (lerimary) and synchronous rectifiers currents, (QE (I $l_{\text {QE }}$) and QF ($\left.l_{\text {QF }}\right)$), with respect to the synchronous rectifier gate drive currents. Note that I_{QE} and I_{QF} are also T1's secondary winding currents as well. Variable D is the converters duty cycle.

Figure 4-1. T1 Primary and QE and QF FET Currents
Calculate T1 secondary RMS current (ISRMS):

$$
\begin{align*}
& \mathrm{I}_{\mathrm{PS}}=\frac{\mathrm{P}_{\text {OUT }}}{V_{\text {OUT }}}+\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2} \approx 55 \mathrm{~A} \tag{9}\\
& \mathrm{I}_{\mathrm{MS}}=\frac{\mathrm{P}_{\text {OUT }}}{V_{\text {OUT }}}-\frac{\Delta \mathrm{L}_{\text {LOUT }}}{2} \approx 45 \mathrm{~A} \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{MS} 2}=\mathrm{I}_{\mathrm{PS}}-\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{4} \approx 50 \mathrm{~A} \tag{11}
\end{equation*}
$$

Secondary RMS current (ISRMS1) when energy is being delivered to the secondary:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{SRMS} 1}=\sqrt{\left(\frac{\mathrm{D}_{\mathrm{MAX}}}{2}\right)\left[\mathrm{I}_{\mathrm{PS}} \times \mathrm{I}_{\mathrm{MS}}+\frac{\left(\mathrm{I}_{\mathrm{PS}}-\mathrm{I}_{\mathrm{MS}}\right)^{2}}{3}\right]} \approx 29.6 \mathrm{~A} \tag{12}
\end{equation*}
$$

Secondary RMS current (ISRMS2) when current is circulating through the transformer when QE and QF are both on.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{SRMS} 2}=\sqrt{\left(\frac{1-\mathrm{D}_{\mathrm{MAX}}}{2}\right)\left[\mathrm{IPS}_{\mathrm{PS}} \times \mathrm{I}_{\mathrm{MS} 2}+\frac{\left(\mathrm{I}_{\mathrm{PS}}-\mathrm{I}_{\mathrm{MS} 2}\right)^{2}}{3}\right]} \approx 20.3 \mathrm{~A} \tag{13}
\end{equation*}
$$

Secondary RMS current (I ${ }_{\text {SRMS3 }}$) caused by the negative current in the opposing winding during freewheeling period, please refer to Figure 4-1.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{SRMS} 3}=\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2} \sqrt{\left(\frac{1-\mathrm{D}_{\mathrm{MAX}}}{2 \times 3}\right)} \approx 1.1 \mathrm{~A} \tag{14}
\end{equation*}
$$

Total secondary RMS current (ISRMS $)$:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{SRMS}}=\sqrt{\mathrm{I}_{\mathrm{SRMS} 1}{ }^{2}+\mathrm{I}_{\mathrm{SRMS} 2}{ }^{2}+\mathrm{I}_{\mathrm{SRMS}}{ }^{2}} \approx 36.0 \mathrm{~A} \tag{15}
\end{equation*}
$$

Calculate T1 Primary RMS Current (IPRMS):

$$
\begin{align*}
& \Delta \mathrm{I}_{\mathrm{LMAG}}=\frac{\mathrm{V}_{\mathrm{INMIN}} \times \mathrm{D}_{\mathrm{MAX}}}{\mathrm{~L}_{\mathrm{MAG}} \times \mathrm{f}_{\mathrm{S}}} \approx 0.47 \mathrm{~A} \tag{16}\\
& \mathrm{I}_{\mathrm{PP}}=\left(\frac{\mathrm{P}_{\text {OUT }}}{V_{\mathrm{OUT}} \times \eta}+\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2}\right) \frac{1}{\mathrm{a} 1}+\Delta \mathrm{I}_{\mathrm{LMAG}} \approx 3.3 \mathrm{~A} \tag{17}\\
& \mathrm{I}_{\mathrm{MP}}=\left(\frac{\mathrm{P}_{\text {OUT }}}{V_{\text {OUT }} \times \eta}-\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2}\right) \frac{1}{\mathrm{a} 1}+\Delta \mathrm{I}_{\mathrm{LMAG}} \approx 2.8 \mathrm{~A} \tag{18}
\end{align*}
$$

T1 Primary RMS (l ${ }_{\text {PRMS1 }}$) current when energy is being delivered to the secondary.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{PRMS} 1}=\sqrt{\left(\mathrm{D}_{\mathrm{MAX}}\right)\left[\mathrm{I}_{\mathrm{PP}} \times \mathrm{I}_{\mathrm{MP}}+\frac{\left(\mathrm{I}_{\mathrm{PP}}-\mathrm{I}_{\mathrm{MP}}\right)^{2}}{3}\right]} \approx 2.5 \mathrm{~A} \tag{19}
\end{equation*}
$$

T1 Primary RMS (lpRMS2) current when the converter is free wheeling.

$$
\begin{align*}
& \mathrm{I}_{\mathrm{MP} 2}=\mathrm{I}_{\mathrm{PP}}-\left(\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2}\right) \frac{1}{\mathrm{a} 1} \approx 3.0 \mathrm{~A} \tag{20}\\
& \mathrm{I}_{\mathrm{PRMS} 2}=\sqrt{\left(1-D_{M A X}\right)\left[I_{P P} \times I_{M P 2}+\frac{\left(I_{P P}-I_{M P 2}\right)^{2}}{3}\right]} \approx 1.7 \mathrm{~A} \tag{21}
\end{align*}
$$

Total T1 primary RMS current (IPRMS $)$

$$
\begin{equation*}
\mathrm{I}_{\text {PRMS }}=\sqrt{\mathrm{I}_{\mathrm{PRMS} 1}{ }^{2}+\mathrm{I}_{\mathrm{PRMS} 2}}{ }^{2} \approx 3.1 \mathrm{~A} \tag{22}
\end{equation*}
$$

The transformer calculations were given to Vitec a magnetic manufacturer to design a custom transformer to meet our design requirements. The transformer they designed for this application is part number 75PR8107 and the transformer has the following specifications.

$$
\begin{equation*}
\text { a1 = } 21 \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAG}}=2.8 \mathrm{mH} \tag{24}
\end{equation*}
$$

Measured leakage inductance on the Primary:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{LK}}=4 \mathrm{uH} \tag{25}
\end{equation*}
$$

Transformer Primary DC resistance:

$$
\begin{equation*}
\mathrm{DCR}_{\mathrm{P}}=0.215 \Omega \tag{26}
\end{equation*}
$$

Transformer Secondary DC resistance:

$$
\begin{equation*}
\mathrm{DCR}_{S}=0.58 \Omega \tag{27}
\end{equation*}
$$

Estimated transform losses ($\mathrm{P}_{\mathrm{T} 1}$) are twice the copper loss.

Note

This is just an estimate and the total losses can vary based on magnetic design.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{T} 1} \approx 2 \times\left(\mathrm{I}_{\mathrm{PRMS}}{ }^{2} \times \mathrm{DCR}_{\mathrm{P}}+2 \times \mathrm{I}_{\mathrm{SRMS}}{ }^{2} \times \mathrm{DCR}_{\mathrm{S}}\right) \approx 7.0 \mathrm{~W} \tag{28}
\end{equation*}
$$

Calculate remaining power budget:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BUDGET}}=\mathrm{P}_{\mathrm{BUDGET}}-\mathrm{P}_{\mathrm{T} 1} \approx 38.1 \mathrm{~W} \tag{29}
\end{equation*}
$$

5 QA, QB, QC, QD FET Selection

The FETs to drive the HBridge (QA..QD) need to selected based on maximum drain to source voltage $\left(\mathrm{V}_{\mathrm{dsQA}} \mathrm{max}\right.$) and peak drain to source current ($\mathrm{I}_{\mathrm{dsQA}} \mathrm{max}$).

$$
\begin{align*}
& \mathrm{V}_{\mathrm{dsQA} A_{-} \max } \geq \mathrm{V}_{\text {INMAX }}=410 \mathrm{~V} \tag{30}\\
& \mathrm{I}_{\mathrm{dsQA} A^{\prime} \max } \geq \mathrm{I}_{\mathrm{PP}}=3.3 \mathrm{~A} \tag{31}
\end{align*}
$$

The FETs then need to be selected based on efficiency goals and FET power dissipation (P_{QA}) and is a trial an error process. Equations 32 through 38 are used to estimate $P_{Q A}$ based on FET data sheet parameters. To meet our efficiency goals, we selected a $20 \mathrm{~A}, 650 \mathrm{~V}$, CoolMOS FETs from Infineon that had an estimated P_{QA} of 2.1 W and would enable us to hit our efficiency goals.
In this design, to meet efficiency and voltage requirements $20 \mathrm{~A}, 650 \mathrm{~V}$, CoolMOS FETs from Infineon were chosen for QA..QD.

FET drain to source on resistance:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{QA}}=0.220 \Omega \tag{32}
\end{equation*}
$$

FET Specified Coss:

$$
\begin{equation*}
\mathrm{C}_{\text {OSS_QA_SPEC }}=780 \mathrm{pF} \tag{33}
\end{equation*}
$$

Voltage across drain-to-source $\left(\mathrm{V}_{\mathrm{dsQA}}\right)$ where $\mathrm{C}_{\mathrm{OSS}}$ was measured, data sheet parameter:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{dsQA}}=25 \mathrm{~V} \tag{34}
\end{equation*}
$$

Calculate average $\mathrm{C}_{\text {oss }}$ [2]:

TEXAS

QA FET gate charge:

$$
\begin{equation*}
\mathrm{QA}_{\mathrm{g}}=15 \mathrm{nC} \tag{36}
\end{equation*}
$$

Voltage applied to FET gate to activate FET:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{g}}=12 \mathrm{~V} \tag{37}
\end{equation*}
$$

Calculate QA losses $\left(\mathrm{P}_{\mathrm{QA}}\right)$ based on $\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{QA}}$ and gate charge $\left(\mathrm{QA}_{\mathrm{g}}\right)$:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{QA}}=\mathrm{I}_{\mathrm{PRMS}}{ }^{2} \times \mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{QA}}+2 \times \mathrm{QA}_{\mathrm{g}} \times \mathrm{V}_{\mathrm{g}} \times \frac{\mathrm{fs}}{2} \approx 2.1 \mathrm{~W} \tag{38}
\end{equation*}
$$

Recalculate power budget:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BUDGET}}=\mathrm{P}_{\mathrm{BUDGET}}-4 \times \mathrm{P}_{\mathrm{QA}} \approx 29.7 \mathrm{~W} \tag{39}
\end{equation*}
$$

6 Selecting L_{s}

Calculating the shim inductor $\left(L_{S}\right)$ is based on the amount of energy required to achieve zero voltage switching. This inductor needs to able to deplete the energy from the parasitic capacitance at the switch node. The following equation selects L_{s} to achieve Zero Voltage Switching (ZVS) at 100% load down to 50% load based on the primary FET's average total $\mathrm{C}_{\text {Oss }}$ at the switch node.

Note

There might be more parasitic capacitance than was estimated at the switch node and L_{s} might have to be adjusted based on the actual parasitic capacitance in the final design.

$$
\begin{equation*}
\mathrm{L}_{\mathrm{S}} \geq\left(2 \times \mathrm{C}_{\text {OSS_QA_AVG }}\right) \frac{\mathrm{V}_{\text {INMAX }}{ }^{2}}{\left(\frac{\mathrm{I}_{\mathrm{PP}}}{2}-\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2 \times \mathrm{a} 1}\right)^{2}}-\mathrm{L}_{\mathrm{LK}} \approx 26 \mathrm{uH} \tag{40}
\end{equation*}
$$

For this design Vitec Electronics Corporation designed a customer L_{s}, part number 60PR964. 60PR964 had a DC resistance ($\mathrm{DCR}_{\mathrm{LS}}$) of $27 \mathrm{~m} \Omega$.

$$
\begin{equation*}
\mathrm{DCR}_{\mathrm{LS}}=27 \mathrm{~m} \Omega \tag{41}
\end{equation*}
$$

Estimate L_{s} power loss $\left(\mathrm{P}_{\mathrm{LS}}\right)$ and readjust remaining power budget:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{LS}}=2 \times \mathrm{I}_{\mathrm{PRMS}}{ }^{2} \times \mathrm{DCR}_{\mathrm{LS}} \approx 0.5 \mathrm{~W} \tag{42}\\
& \mathrm{P}_{\mathrm{BUDGET}}=\mathrm{P}_{\mathrm{BUDGET}}-\mathrm{P}_{\mathrm{LS}} \approx 29.2 \mathrm{~W} \tag{43}
\end{align*}
$$

7 Output Inductor Selection (Lout)

To keep the RMS current in the output capacitance to a minimum Lout will be designed for and inductor ripple current ($\Delta \mathrm{I}_{\text {LOUT }}$) will be 20% of the DC output current.

$$
\begin{align*}
& \Delta \mathrm{I}_{\text {LOUT }}=\frac{\mathrm{P}_{\text {OUT }} \times 0.2}{\mathrm{~V}_{\text {OUT }}}=\frac{600 \mathrm{~W} \times 0.2}{12 \mathrm{~V}} \approx 10 \mathrm{~A} \tag{44}\\
& \mathrm{~L}_{\text {OUT }}=\frac{\mathrm{V}_{\text {OUT }} \times\left(1-\mathrm{D}_{\text {TYP }}\right)}{\Delta \mathrm{I}_{\text {LOUT }} \times \mathrm{f}_{\mathrm{S}}} \approx 2 \mathrm{uH} \tag{45}
\end{align*}
$$

Calculate output inductor RMS current (ILOUT_RMS):

$$
\begin{equation*}
\mathrm{I}_{\text {LOUT_RMS }}=\sqrt{\left(\mathrm{I}_{\mathrm{OUT}}\right)^{2}+\left(\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{\sqrt{3}}\right)^{2}}=50.3 \mathrm{~A} \tag{46}
\end{equation*}
$$

The L ${ }_{\text {OUT }}$ inductor requirements to meet these design specifications was given to Vitec Electronics Corp and they design a custom inductor for this design that met are design requirements, part number 75PR108. The 75PR108 had a DC resistance (DCR LOUT) of $750 \mu \Omega$

$$
\begin{equation*}
\mathrm{DCR}_{\text {LOUT }}=750 \mathrm{u} \Omega \tag{47}
\end{equation*}
$$

Estimate output inductor losses ($\mathrm{P}_{\text {LOUT }}$) and recalculate power budget. Note $\mathrm{P}_{\text {LOUT }}$ is an estimate of the inductor losses and was estimated to twice the copper loss. Note this may vary based on magnetic manufactures. It is advisable to double check the magnetic loss with the magnetic manufacture.

$$
\begin{align*}
& \mathrm{P}_{\text {LOUT }}=2 \times \mathrm{I}_{\text {LOUT_RMS }}{ }^{2} \times \mathrm{DCR}_{\text {LOUT }} \approx 3.8 \mathrm{~W} \tag{48}\\
& \mathrm{P}_{\text {BUDGET }}=\mathrm{P}_{\text {BUDGET }}-\mathrm{P}_{\text {LOUT }} \approx 25.4 \mathrm{~W} \tag{49}
\end{align*}
$$

8 Output Capacitance (CouT)

The output capacitor is being selected based on holdup time (t_{HU}) and load transient requirements.
t_{HU} is the time it takes $\mathrm{L}_{\mathrm{OUT}}$ to change 90% of its full load current:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{HU}}=\frac{\frac{\mathrm{L}_{\text {OUT }} \times \mathrm{P}_{\text {OUT }} \times 0.9}{V_{\text {OUT }}}}{V_{\text {OUT }}}=7.5 \mu \mathrm{~s} \tag{50}
\end{equation*}
$$

During load transients most of the current will immediately go through the capacitors equivalent series resistance (ESR ${ }_{\text {COUT }}$). The following equations are used to select $E_{\text {COUT }}$ and Cout based on a 90% load step in current. The ESR is selected for 90% of the allowable transient voltage ($\mathrm{V}_{\text {TRAN }}$), while the output capacitance ($\mathrm{C}_{\text {OUT }}$) is selected for 10% of $\mathrm{V}_{\text {TRAN }}$.

$$
\begin{align*}
& \mathrm{ESR}_{\text {COUT }} \leq \frac{\mathrm{V}_{\text {TRAN }} \times 0.9}{\frac{\mathrm{P}_{\text {OUT }} \times 0.9}{\mathrm{~V}_{\text {OUT }}}}=12 \mathrm{~m} \Omega \tag{51}\\
& \mathrm{C}_{\text {OUT }} \geq \frac{\frac{\mathrm{P}_{\text {OUT }} \times 0.9 \times \mathrm{t}_{\mathrm{HU}}}{}}{\mathrm{~V}_{\text {OUT }}} \tag{52}\\
& \mathrm{V}_{\text {TRAN }} \times 0.1
\end{align*} 5.6 \mathrm{mF} .
$$

Before selecting the output capacitance it is also required to calculate the output capacitor RMS current (ICOUT_RMS).

$$
\begin{equation*}
\mathrm{I}_{\text {COUT_RMS }}=\frac{\Delta \mathrm{I}_{\text {LOUT }}}{\sqrt{3}} \approx 5.8 \mathrm{~A} \tag{53}
\end{equation*}
$$

To meet our design requirements five $1500-\mu \mathrm{F}$, aluminum electrolytic capacitors were chosen for the design from United Chemi-Con, part number EKY-160ELL152MJ30S. These capacitors had an ESR of $31 \mathrm{~m} \Omega$. The five capacitors when used in series will have an equivalent ESR of 6.2 mOhm which meets are design requirements.

Number of output capacitors:

$$
\begin{equation*}
\mathrm{n}=5 \tag{54}
\end{equation*}
$$

Total output capacitance:

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }}=1500 \mathrm{uF} \times \mathrm{n} \approx 7500 \mathrm{uF} \tag{55}
\end{equation*}
$$

Effective output capacitance ESR:

TEXAS

$$
\begin{equation*}
\mathrm{ESR}_{\mathrm{COUT}}=\frac{31 \mathrm{~m} \Omega}{\mathrm{n}}=6.2 \mathrm{~m} \Omega \tag{56}
\end{equation*}
$$

Calculate output capacitor loss ($\mathrm{P}_{\text {COUT }}$):

$$
\begin{equation*}
\mathrm{P}_{\text {COUT }}=\mathrm{I}_{\text {COUT_RMS }}{ }^{2} \times \mathrm{ESR}_{\text {COUT }} \approx 0.21 \mathrm{~W} \tag{57}
\end{equation*}
$$

Recalculate remaining Power Budget:

$$
\begin{equation*}
\mathrm{P}_{\text {BUDGET }}=\mathrm{P}_{\text {BUDGET }}-\mathrm{P}_{\text {COUT }} \approx 25.2 \mathrm{~W} \tag{58}
\end{equation*}
$$

9 Select FETs QE and QF

The synchronous FETs are chosen based on current and voltage ratings; as well as, power dissipation to meet the designs efficiency goals. This can be a trial an error process. We selected an evaluated a $75-\mathrm{V}, 120-\mathrm{A}$ FETs, from Fairchild, part number FDP032N08 to see if they could be used for synchronous FETs QE and QF to hit our efficiency goals. After estimating the total FET losses and power budget it was determined that these FETs could be used in this design.

$$
\begin{equation*}
\mathrm{QE}_{\mathrm{g}}=152 \mathrm{nC} \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{QE}}=3.2 \mathrm{~m} \Omega \tag{60}
\end{equation*}
$$

Calculate average FET Coss ($C_{\text {OSS_QE_AVG }}$) based on the data sheet parameters for $\mathrm{C}_{\text {Oss }}$ ($\mathrm{C}_{\text {OSS_SPEC }}$), and
 the design ($\mathrm{V}_{\mathrm{dsQE}}$) that will be applied to the FET in the application.
Voltage across FET QE and QF when they are off:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{dsQE}}=\frac{2 \times \mathrm{V}_{\mathrm{INMAX}}}{\mathrm{a} 1} \approx 39 \mathrm{~V} \tag{61}
\end{equation*}
$$

Voltage where FET Coss is specified and tested in the FET data sheet:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ds}_{-} \text {spec }}=25 \mathrm{~V} \tag{62}
\end{equation*}
$$

Specified output capacitance from FET data sheet:

$$
\begin{equation*}
\mathrm{C}_{\text {OSS_SPEC }}=1810 \mathrm{pF} \tag{63}
\end{equation*}
$$

Average QE and QF Coss [2]:

$$
\begin{equation*}
\mathrm{C}_{\text {OSS_QE_AVG }}=\mathrm{C}_{\text {OSS_SPEC }} \sqrt{\frac{\mathrm{V}_{\mathrm{dsQE}}}{\mathrm{VdS}_{-} \text {spec }}} \approx 1.6 \mathrm{nF} \tag{64}
\end{equation*}
$$

QE and QF RMS current:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{QE} _\mathrm{RMS}}=\mathrm{I}_{\text {SRMS }}=36.0 \mathrm{~A} \tag{65}
\end{equation*}
$$

To estimate FET switching loss the V_{g} vs. Q_{g} curve from the FET data sheet needs to be studied. First the gate charge at the beginning of the miller plateau needs to be determined ($\mathrm{QE}_{\text {MILLER_MIN }}$) and the gate charge at the end of the miller plateau ($Q E_{\text {MILLER_MAX }}$) for the given $V_{D S}$.

QEmiletr_min $\approx 52 \mathrm{nC}$

QEmiller_Max $^{\approx} \mathbf{1 0 0} \mathbf{n C}$

Figure 9-1. \mathbf{V}_{g} vs. Q_{g} for QE and QF FETs
Maximum gate charge at the end of the miller plateau:

$$
\begin{equation*}
\text { QE }_{\text {MILLER_MAX }} \approx 100 \mathrm{nC} \tag{66}
\end{equation*}
$$

Minimum gate charge at the beginning of the miller plateau:

$$
\begin{equation*}
\text { QE }_{\text {MILLER_MIN }} \approx 52 \mathrm{nC} \tag{67}
\end{equation*}
$$

Note

The FETs in this design were driven with UCC27324 setup to drive 4-A (I_{P}) of gate drive current.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{P}} \approx 4 \mathrm{~A} \tag{68}
\end{equation*}
$$

Estimated FET V_{ds} rise and fall time:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{r}} \approx \mathrm{t}_{\mathrm{f}}=\frac{100 \mathrm{nC}-52 \mathrm{nC}}{\frac{I_{\mathrm{P}}}{2}}=\frac{48 \mathrm{nC}}{\frac{4 \mathrm{~A}}{2}} \approx 24 \mathrm{~ns} \tag{69}
\end{equation*}
$$

Estimate QE and QF FET Losses $\left(\mathrm{P}_{\mathrm{QE}}\right)$:

$$
\begin{equation*}
P_{Q E}=I_{Q E _R M S}{ }^{2} \times R_{d s(o n) Q E}+\frac{P_{O U T}}{V_{O U T}} \times V_{d s Q E}\left(t_{r}+t_{f}\right) \frac{f_{s}}{2}+2 \times C_{O S S _Q E _A V G} \times V_{d s Q E} \frac{f_{s}}{2}+2 \times Q_{g Q E} \times V_{g Q E} \frac{f_{s}}{2} \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}_{\mathrm{QE}} \approx 9.3 \mathrm{~W} \tag{71}
\end{equation*}
$$

Recalculate the power budget and check remaining power budget to hit efficency goal.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BUDGET}}=\mathrm{P}_{\mathrm{BUDGET}}-2 \times \mathrm{P}_{\mathrm{QE}} \approx 6.5 \mathrm{~W} \tag{72}
\end{equation*}
$$ INSTRUMENTS

10 Input Capacitance (C_{IN})

This design was being fed by a PFC pre-regulator and the input capacitor $\left(\mathrm{C}_{\mathbb{I}}\right)$ will need to be selected based on holdup requirements; as well as, ripple current and voltage requirements.

Note

The delay time needed to achieve ZVS can act as a duty cycle clamp ($\mathrm{D}_{\mathrm{CLAMP}}$).

Calculate tank frequency:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{R}}=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{S}} \times\left(2 \times \mathrm{C}_{\text {OSS_QA_AVG }}\right)}} \tag{73}
\end{equation*}
$$

Estimated delay time:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{DELAY}}=\frac{2}{\mathrm{f}_{\mathrm{R}} \times 4} \approx 314 \mathrm{~ns} \tag{74}
\end{equation*}
$$

Effective duty cycle clamp ($\mathrm{D}_{\text {CLAMP }}$):

$$
\begin{equation*}
\mathrm{D}_{\text {CLAMP }}=\left(\frac{1}{\mathrm{fs}}-\mathrm{t}_{\text {DELAY }}\right) \times \mathrm{fs}=94 \% \tag{75}
\end{equation*}
$$

$V_{\text {DROP }}$ is the minimum input voltage where the converter can still maintain output regulation. The converter's input voltage would only drop down this low during a brownout or line-drop condition if this converter was following a PFC pre-regulator.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{DROP}}=\left(\frac{2 \times \mathrm{D}_{\mathrm{CLAMP}} \times \mathrm{V}_{\mathrm{RDSON}}+\mathrm{a} 1 \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{RDSON}}\right)}{\mathrm{D}_{\mathrm{CLAMP}}}\right)=276.2 \mathrm{~V} \tag{76}
\end{equation*}
$$

$\mathrm{C}_{\text {IN }}$ was calculated based on one line cycle of holdup:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{IN}} \geq \frac{2 \times \mathrm{P}_{\mathrm{OUT}} \times \frac{1}{60 \mathrm{~Hz}}}{\left(\mathrm{~V}_{\mathrm{IN}}^{2}-\mathrm{V}_{\mathrm{DROP}}{ }^{2}\right)} \approx 364 \mathrm{uF} \tag{77}
\end{equation*}
$$

Calculate high frequency input capacitor RMS current (I $\mathrm{I}_{\text {CINRMS }}$).

$$
\begin{equation*}
\mathrm{I}_{\text {CINRMS }}=\sqrt{\mathrm{I}_{\text {PRMS } 1}{ }^{2}-\left(\frac{\mathrm{P}_{\text {OUT }}}{V_{\text {INMIN }} \times \mathrm{a1}}\right)^{2}}=1.8 \mathrm{~A} \tag{78}
\end{equation*}
$$

To meet the input capacitance and RMS current requirements for this design we chose a $330-\mu \mathrm{F}$ capacitor from Panasonic part number EETHC2W331EA.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{IN}}=330 \mathrm{uF} \tag{79}
\end{equation*}
$$

This capacitor had a high frequency (${E S R R_{C I N}}$) of $150 \mathrm{~m} \Omega$ this was measured with an impedance analyzer at both 120 and 200 kHz .

$$
\begin{equation*}
\mathrm{ESR}_{\mathrm{CIN}}=0.150 \Omega \tag{80}
\end{equation*}
$$

Estimate C_{IN} power dissipation $\left(\mathrm{P}_{\mathrm{CIN}}\right)$:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{CIN}}=\mathrm{I}_{\mathrm{CINRMS}}{ }^{2} \times \mathrm{ESR}_{\mathrm{CIN}}=0.5 \mathrm{~W} \tag{81}
\end{equation*}
$$

Recalculate remaining power budget:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BUDGET}}=\mathrm{P}_{\mathrm{BUDGET}}-\mathrm{P}_{\mathrm{CIN}} \approx 6.0 \mathrm{~W} \tag{82}
\end{equation*}
$$

There is roughly 6.0 W left in the power budget left for the current sensing network, and biasing the control device and all resistors supporting the control device.

11 Setting Up the Current Sense (CS) Network (CT, R $\mathbf{R}_{\mathbf{S}}, \mathrm{R}_{\mathrm{RE}}, \mathrm{D}_{\mathrm{A}}$)

The current sense transforer (CT) chosen for this design had a turn's ratio (a2) of 100:1. This transformer was selected to attenenuate the T1's primary current for current sensing to reduce power disipation in the current sense resistor $\left(R_{S}\right)$ improving system efficency.

$$
\begin{equation*}
\mathrm{a} 2=\frac{\mathrm{I}}{\mathrm{I}}=100 \tag{83}
\end{equation*}
$$

Calculate nominal peak current $\left(\mathrm{I}_{\mathrm{P} 1}\right)$ at $\mathrm{V}_{\mathrm{INMIN}}$:
Peak primary current:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{P} 1}=\left(\frac{\mathrm{POUT}}{\text { VOUT } \times \eta}+\frac{\Delta \mathrm{ILOUT}}{2}\right) \frac{1}{\mathrm{a} 1}+\frac{\mathrm{V}_{\mathrm{INMAX}} \times \mathrm{D}_{\mathrm{MAX}}}{\mathrm{~L}_{\mathrm{MAG}} \times 2 \times \mathrm{f}_{\mathrm{S}}} \approx 3.3 \mathrm{~A} \tag{84}
\end{equation*}
$$

The voltage where peak current limit will trip.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{P}}=2 \mathrm{~V} \tag{85}
\end{equation*}
$$

Calculate current sense resistor $\left(R_{S}\right)$ and leave 200 mV for slope compensation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{P}}-0.2 \mathrm{~V}}{\frac{\mathrm{I}_{\mathrm{PEAK}}}{\mathrm{a} 2} \times 1.1} \approx 49.9 \Omega \tag{86}
\end{equation*}
$$

Select a standard resistor for R_{S} :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{S}}=48.7 \Omega \tag{87}
\end{equation*}
$$

Estimate power loss $\left(\mathrm{P}_{\mathrm{RS}}\right)$ for R_{S} :

$$
\begin{equation*}
\mathrm{P}_{\mathrm{RS}}=\left(\frac{\mathrm{I} \mathrm{PRMS} 1}{\mathrm{a} 2}\right)^{2} \times \mathrm{R}_{\mathrm{S}} \approx 0.03 \mathrm{~W} \tag{88}
\end{equation*}
$$

Calculate maximum reverse voltage $\left(\mathrm{V}_{\mathrm{DA}}\right)$ on D_{A} :

$$
\begin{equation*}
\mathrm{V}_{\mathrm{DA}}=\mathrm{V}_{\mathrm{P}} \times \frac{\mathrm{D}_{\mathrm{CLAMP}}}{1-\mathrm{D}_{\mathrm{CLAMP}}} \approx 29.8 \mathrm{~V} \tag{89}
\end{equation*}
$$

Estimate D_{A} power loss (P_{DA}):

$$
\begin{equation*}
\mathrm{P}_{\mathrm{DA}}=\frac{\mathrm{P}_{\mathrm{OUT}} \times 0.6 \mathrm{~V}}{\mathrm{~V}_{\mathrm{INMIN}} \times \eta \times \mathrm{a} 2} \approx 0.01 \mathrm{~W} \tag{90}
\end{equation*}
$$

Calculate R_{S} reset resistor R_{RE} :
Resistor $R_{R E}$ is used to reset the current sense transformer CT.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{RE}}=100 \times \mathrm{R}_{\mathrm{S}}=4.87 \mathrm{k} \Omega \tag{91}
\end{equation*}
$$

Resistor $R_{L F}$ and capacitor $C_{L F}$ form a low pass filter for the current sense signal (Pin 15). For this design we chose the following values. This filter has a low frequency pole (f ${ }_{\text {LFP }}$) at 482 kHz . This should work for most applications but maybe adjusted to suit individual layouts and EMI present in the design.

TEXAS

$$
\begin{align*}
& \mathrm{R}_{\mathrm{LF}}=1 \mathrm{k} \Omega \tag{92}\\
& \mathrm{C}_{\mathrm{LF}}=330 \mathrm{pF} \tag{93}\\
& \mathrm{f}_{\mathrm{LFP}}=\frac{1}{2 \pi \mathrm{f} \times \mathrm{R}_{\mathrm{LF}} \times \mathrm{C}_{\mathrm{LF}}}=482 \mathrm{kHz} \tag{94}
\end{align*}
$$

The current sense network dissipated roughly 0.04 W and had very little effect on the power budget.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BUDGET}} \approx \mathrm{P}_{\mathrm{BUDGET}}-\mathrm{P}_{\mathrm{RS}}-\mathrm{P}_{\mathrm{DA}} \approx 5.96 \mathrm{~W} \tag{95}
\end{equation*}
$$

12 Voltage Loop and Slope Compensation

The UCC28950/1 VREF output (Pin 1) needs a high frequency bypass capacitor to filter out high frequency noise. This pin needs at least $1 \mu \mathrm{~F}$ of high frequency bypass capacitance $\left(\mathrm{C}_{\mathrm{BP} 1}\right)$. Please refer to figure 1 for proper placement.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{BP} 1}=1 \mathrm{uF} \tag{96}
\end{equation*}
$$

The voltage amplifier reference voltage (Pin 2, EA +) can be set with a voltage divider $\left(R_{A}, R_{B}\right)$, for this design example we are going to set the error amplifier reference voltage (V 1) to 2.5 V . Select a standard resistor value for R_{B} and then calculate resistor value R_{A}.
UCC28950/1/1 reference voltage:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \tag{97}
\end{equation*}
$$

Set voltage amplifier reference voltage:

$$
\begin{align*}
& \mathrm{V} 1=2.5 \mathrm{~V} \tag{98}\\
& \mathrm{R}_{\mathrm{B}}=2.37 \mathrm{k} \Omega \tag{99}\\
& \mathrm{R}_{\mathrm{A}}=\frac{\mathrm{R}_{\mathrm{B}} \times\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{V} 1\right)}{\mathrm{V} 1}=2.37 \mathrm{k} \Omega \tag{100}
\end{align*}
$$

Voltage divider formed by resistor R_{C} and R_{I} are chosen to set the DC output voltage ($\mathrm{V}_{\text {OUT }}$) at Pin 3 (EA-).
Select a standard resistor for R_{C} :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{C}}=2.37 \mathrm{k} \Omega \tag{101}
\end{equation*}
$$

Calculate R_{I} :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{I}}=\frac{\mathrm{Rc} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V} 1\right)}{\mathrm{V} 1} \approx 9 \mathrm{k} \Omega \tag{102}
\end{equation*}
$$

Then choose a standard resistor for R_{l} :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{I}}=9.09 \mathrm{k} \Omega \tag{103}
\end{equation*}
$$

Compensating the feedback loop can be accomplished by properly selecting the feedback components $\left(R_{F}, C_{Z}\right.$ and C_{P}). These components are placed as close to pin 3 and 4 as possible of the UCC28950/1.

Calculate load impedance at 10% load ($R_{\text {LOAD }}$):

$$
\begin{equation*}
\mathrm{R}_{\mathrm{LOAD}}=\frac{\mathrm{V}_{\text {OUT }}{ }^{2}}{\mathrm{P}_{\mathrm{OUT}} \times 0.1}=2.4 \Omega \tag{104}
\end{equation*}
$$

Approximation of control to output transfer function $\left(\mathrm{G}_{\mathrm{CO}}(\mathrm{f})\right)$ as a function of frequency:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{CO}(\mathrm{f})} \approx \frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta V_{\mathrm{C}}}=\mathrm{a} 1 \times \mathrm{a} 2 \times \frac{\mathrm{R}_{\mathrm{LOAD}}}{\mathrm{R}_{\mathrm{S}}} \times\left(\frac{1+2 \pi \mathrm{j} \times \mathrm{f} \times \mathrm{ESR}_{\mathrm{COUT}} \times \mathrm{C}_{\mathrm{OUT}}}{1+2 \pi \mathrm{j} \times \mathrm{f} \times \mathrm{R}_{\mathrm{LOAD}} \times \mathrm{C}_{\mathrm{OUT}}}\right) \times \frac{1}{1+\frac{\mathrm{S}(\mathrm{f})}{2 \pi \times \mathrm{f}_{\mathrm{PP}}}+\left(\frac{\mathrm{S}(\mathrm{f})}{2 \pi \times \mathrm{f}_{\mathrm{PP}}}\right)^{2}} \tag{105}
\end{equation*}
$$

Double pole frequency of $\mathrm{G}_{\mathrm{CO}}(\mathrm{f})$:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{PP}} \approx \frac{\mathrm{fs}}{4}=50 \mathrm{kHz} \tag{106}
\end{equation*}
$$

Angular velocity:

$$
\begin{equation*}
S(f)=2 \pi \times j \times f \tag{107}
\end{equation*}
$$

Compensate the voltage loop with type 2 feedback network. The following transfer function is the compensation gain as a function of frequency $\left(G_{C}(f)\right)$. Please refer to Figure 2-1 for component placement.

$$
\begin{equation*}
\mathrm{G}_{\mathrm{C}(\mathrm{f})}=\frac{\Delta V_{\mathrm{C}}}{\Delta V_{\text {OUT }}}=\frac{2 \pi \mathrm{j} \times \mathrm{f} \times \mathrm{R}_{\mathrm{F}} \times \mathrm{C}_{\mathrm{Z}}+1}{2 \pi \mathrm{j} \times \mathrm{f} \times\left(\mathrm{C}_{\mathrm{Z}}+\mathrm{C}_{\mathrm{P}}\right) \mathrm{R}_{\mathrm{I}}\left(\frac{2 \pi j \times \mathrm{f} \times \mathrm{C}_{\mathrm{Z}} \times \mathrm{C}_{\mathrm{P}} \times \mathrm{R}_{\mathrm{F}}}{\mathrm{C}_{\mathrm{Z}}+\mathrm{C}_{\mathrm{P}}}+1\right)} \tag{108}
\end{equation*}
$$

Calculate voltage loop feedback resistor $\left(R_{F}\right)$ based on crossing the voltage (f_{C}) loop over at a $10^{\text {th }}$ of the double pole frequency ($f_{P P}$).

$$
\begin{align*}
& \mathrm{f}_{\mathrm{C}}=\frac{\mathrm{f}_{\mathrm{PP}}}{10}=5 \mathrm{kHz} \tag{110}\\
& \mathrm{R}_{\mathrm{F}}=\frac{\mathrm{R}_{\mathrm{I}}}{\mathrm{G}_{\mathrm{CO}}\left(\frac{\mathrm{f}_{\mathrm{PP}}}{10}\right)} \approx 27.9 \mathrm{k} \Omega \tag{111}
\end{align*}
$$

Select a standard resistor for R_{F}.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{F}} \approx 27.4 \mathrm{k} \Omega \tag{112}
\end{equation*}
$$

Calculate the feedback capacitor $\left(C_{Z}\right)$ to give added phase at crossover.

$$
\begin{align*}
& \mathrm{C}_{\mathrm{Z}}=\frac{1}{2 \times \pi \times \mathrm{R}_{\mathrm{F}} \times \frac{\mathrm{f}_{\mathrm{C}}}{5}} \approx 5.8 \mathrm{nF} \tag{113}\\
& \mathrm{C}_{\mathrm{Z}}=5.6 \mathrm{nF} \tag{114}
\end{align*}
$$

Select a standard capacitance value for the design.
Put a pole at two times f_{C}.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}=\frac{1}{2 \times \pi \times \mathrm{R}_{\mathrm{F}} \times \mathrm{f}_{\mathrm{C}} \times 2} \approx 580 \mathrm{pF} \tag{115}
\end{equation*}
$$

Select a standard capacitance value for the design.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}=560 \mathrm{pF} \tag{116}
\end{equation*}
$$

Loop gain as a function of frequency $\left(T_{V}(f)\right)$ in $d B$.

$$
\begin{equation*}
\mathrm{T}_{\mathrm{V}} \mathrm{~dB}(\mathrm{f})=20 \log \left(\left|\mathrm{G}_{\mathrm{C}}(\mathrm{f}) \times \mathrm{G}_{\mathrm{CO}}(\mathrm{f})\right|\right) \tag{117}
\end{equation*}
$$

Plot theoretical loop gain and phase to graphically check for loop stability (Figure 11-1). The theoretical loop gain crossed over at roughly 3.7 kHz with a phase margin of greater than 90 degrees.

TEXAS INSTRUMENTS

Note

It is wise to check your loop stability of your final design with transient testing and/or a network analyzer and adjust the compensation $\left(\mathrm{G}_{\mathrm{C}}(\mathrm{f})\right.$) feedback as necessary.

Figure 12-1. Loop Gain and Loop Phase
To limit over shoot during power up the UCC28950/1 has a soft-start function (SS, Pin 5) which in this application was set for a soft start time of $15 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{ss}}\right)$.

$$
\begin{align*}
& \mathrm{t}_{\mathrm{sS}}=15 \mathrm{~ms} \tag{118}\\
& \mathrm{C}_{\mathrm{SS}}=\frac{\mathrm{t}_{\mathrm{ss}} \times 25 \mathrm{uA}}{\mathrm{~V} 1+0.55} \approx 123 \mathrm{nF} \tag{119}
\end{align*}
$$

Select a standard capacitor for the design.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{ss}}=150 \mathrm{nF} \tag{120}
\end{equation*}
$$

The UCC28950/1 also provides slope compensation for peak current mode control (Pin 12). This can be set by setting $R_{\text {SUM }}$ with the following equations. The following equations will calculate the required amount of slope compensation ($V_{\text {SLOPE }}$) that is needed for loop stability.

Note

The change in magnetizing current on the primary $\Delta I_{\text {MAG }}$ contributes to slope compensation.

$$
\begin{equation*}
\Delta \mathrm{IL}_{\mathrm{MAG}}=\frac{\mathrm{V}_{\mathrm{IN}}\left(1-\mathrm{D}_{\mathrm{TYP}}\right)}{\mathrm{L}_{\mathrm{MAG}} \times \mathrm{fs}}=234 \mathrm{~mA} \tag{121}
\end{equation*}
$$

To help improve noise immunity $\mathrm{V}_{\text {SLOPE }}$ is set to have a total slope that will equal 10% of the maximum current sense signal (0.2 V) over one inductor switching period.

$$
\begin{equation*}
\mathrm{V}_{\text {SLOPE1 }}=0.2 \mathrm{~V} \times \mathrm{fs} \times \frac{0.04 \mathrm{~V}}{\mathrm{us}} \tag{122}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{V}_{\text {SLOPE2 }}=0.2 \mathrm{~V} \times \mathrm{fs}-\frac{\left(\frac{\Delta \mathrm{IL}_{\mathrm{OUT}}}{\mathrm{a} 1 \times 2}-\Delta \mathrm{IL}_{\mathrm{MAG}}\right) \times \mathrm{R}_{\mathrm{S}}\left(1-\mathrm{D}_{\mathrm{TYP}}\right) \times \mathrm{ff}_{\mathrm{S}}}{\mathrm{a} 2}=\frac{0.04 \mathrm{~V}}{\mathrm{us}} \tag{123}
\end{equation*}
$$

If $\mathrm{V}_{\text {SLOPE2 }}<\mathrm{V}_{\text {SLOPE1 }}$ set $\mathrm{V}_{\text {SLOPE }}=\mathrm{V}_{\text {SLOPE1 }}$
If $\mathrm{V}_{\text {SLOPE2 }} \geq \mathrm{V}_{\text {SLOPE1 }}$ set $\mathrm{V}_{\text {SLOPE }}=\mathrm{V}_{\text {SLOPE2 }}$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SUM}}=\frac{2.5 \mathrm{~V} \times 10^{3} \Omega}{\mathrm{v}_{\mathrm{SLOPE}} \times 0.5 \mathrm{us}} \approx 125.4 \mathrm{k} \Omega \tag{124}
\end{equation*}
$$

Select a standard resistor for $\mathrm{R}_{\text {SUM }}$.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SUM}}=127 \mathrm{k} \Omega \tag{125}
\end{equation*}
$$

13 Setting Turn-on Delays to Achieve Zero Voltage Switching (ZVS)

This application note presents a fixed delay approach to achieving ZVS from 100% load down to 50% load. When the converter is operating below 50% load the converter will be operating in valley switching. In order to achieve zero voltage switching on switch node of QB $_{d}$, the turn-on ($t_{\text {ABSET }}$) delays of FETs QA and QB needs to be initially set based on the interaction of L_{s} and the theoretical switch node capacitance. The following equations are used to set $\mathrm{t}_{\mathrm{ABSET}}$ initially.
Equate shim inductance to two times Coss capacitance:

$$
\begin{equation*}
2 \pi \times \mathrm{f}_{\mathrm{R}} \mathrm{~L}_{\mathrm{S}}=\frac{1}{2 \pi \times \mathrm{f}_{\mathrm{R}} \times\left(2 \times \mathrm{C}_{\text {OSS_QA_AVG }}\right)} \tag{126}
\end{equation*}
$$

Calculate tank frequency:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{R}}=\frac{1}{2 \pi \sqrt{\mathrm{LS}_{\mathrm{S}} \times\left(2 \times \mathrm{C}_{\text {OSS_QA_AVG })}\right.}} \tag{127}
\end{equation*}
$$

Set initial $t_{\text {ABSET }}$ delay time and adjust as necessary.

Note

The 2.25 factor of the $t_{\text {ABSET }}$ equation was derived from empirical test data and may vary based on individual design differences.

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ABSET}}=\frac{2.25}{\mathrm{f}_{\mathrm{R}} \times 4} \approx 346 \mathrm{~ns} \tag{128}
\end{equation*}
$$

The resistor divider formed by $R_{D A 1}$ and $R_{D A 2}$ programs the $t_{A B S E T}, t_{C D S E T}$ delay range of the UCC28950/1. Select a standard resistor value for $R_{D A 1}$.

Note

$t_{\text {ABSET }}$ can be programmed between 30 ns to 1000 ns .

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DA} 1}=8.25 \mathrm{k} \Omega \tag{129}
\end{equation*}
$$

The voltage at the ADEL input of the UCC28950/1 ($\mathrm{V}_{\text {ADEL }}$) needs to be set with $\mathrm{R}_{\mathrm{DA} 2}$ based on the following conditions.

If $\mathrm{t}_{\mathrm{ABSET}}>155 \mathrm{~ns}$ set $\mathrm{V}_{\mathrm{ADEL}}=0.2 \mathrm{~V}, \mathrm{t}_{\mathrm{ABSET}}$ can be programmed between 155 ns and 1000 ns :
If $\mathrm{t}_{\mathrm{ABSET}} \leq 155 \mathrm{~ns}$ set $\mathrm{V}_{\mathrm{ADEL}}=1.8 \mathrm{~V}$, $\mathrm{t}_{\mathrm{ABSET}}$ can be programmed between 29 ns and 155 ns :

Based on $V_{A D E L}$ selection, calculate $R_{\text {DA2 }}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DA} 2}=\frac{\mathrm{R}_{\mathrm{DA} 1} \times \mathrm{V}_{\mathrm{ADEL}}}{5 \mathrm{~V}-\mathrm{V}_{\mathrm{ADEL}}} \approx 344 \Omega \tag{130}
\end{equation*}
$$

Select the closest standard resistor value for $\mathrm{R}_{\mathrm{DA} 2}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DA} 2}=348 \Omega \tag{131}
\end{equation*}
$$

Recalculate $\mathrm{V}_{\text {ADEL }}$ based on resistor divider selection:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ADEL}}=\frac{5 \mathrm{~V} \times \mathrm{R}_{\mathrm{DA} 2}}{\mathrm{R}_{\mathrm{DA} 1}+\mathrm{R}_{\mathrm{DA} 2}}=0.202 \mathrm{~V} \tag{132}
\end{equation*}
$$

Resistor $\mathrm{R}_{\mathrm{DELAB}}$ programs $\mathrm{t}_{\mathrm{ABSET}}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DELAB}}=\frac{\left(\mathrm{t}_{\mathrm{ABSET}}-5 \mathrm{~ns}\right)}{\mathrm{ns}} \times \frac{\left(0.15 \mathrm{~V}+\mathrm{v}_{\mathrm{ADEL}} \times 1.46\right) \times 10^{3}}{5} \times \frac{1}{1 \mathrm{~A}} \approx 30.4 \mathrm{k} \Omega \tag{133}
\end{equation*}
$$

Select a standard resistor value for the design:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DELAB}}=30.1 \mathrm{k} \Omega \tag{134}
\end{equation*}
$$

Note

Once you have a prototype up and running it is recommended you fine tune $\mathrm{t}_{\text {ABSET }}$ at light load to the peak and valley of the resonance between L_{s} and the switch node capacitance. In this design the delay was set at 10% load.

Set tabset at resonant tank Peak and Valley

Figure 13-1. $\mathrm{t}_{\mathrm{ABSET}}$ to Achieve Valley Switching at Light Loads
The initial starting point for the QC and QD turn on delays ($\mathrm{t}_{\mathrm{CDSET}}$) should be initially set for the same delay as the QA and QB turn on delays (Pin 6). The following equations program the QC and QD turn-on delays ($\mathrm{t}_{\text {CDSET }}$) by properly selecting resistor $\mathrm{R}_{\text {DELCD }}$ (Pin 7).

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ABSET}}=\mathrm{t}_{\mathrm{CDSET}} \tag{135}
\end{equation*}
$$

Resistor $\mathrm{R}_{\text {DELCD }}$ programs $\mathrm{t}_{\text {CDSET }}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DELCD}}=\frac{\left(\mathrm{t}_{\text {ABSET }}-5 \mathrm{~ns}\right)}{\mathrm{ns}} \times \frac{\left(0.15 \mathrm{~V}+\mathrm{v}_{\text {ADEL }} \times 1.46\right) \times 10^{3}}{5} \times \frac{1}{1 \mathrm{~A}} \approx 30.4 \mathrm{k} \Omega \tag{136}
\end{equation*}
$$

Select a standard resistor for the design:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DELCD}}=30.1 \mathrm{k} \Omega \tag{137}
\end{equation*}
$$

TEXAS INSTRUMENTS

Note

Once you have a prototype up and running it is recommended to fine tune $t_{\text {CDSET }}$ at light load. In this design the CD node was set to valley switch at roughly 10% load. Obtaining ZVS at lighter loads with switch node DD $_{d}$ is easier due to the reflected output current present in the primary of the transformer at FET QD and QC turnoff/on. This is because there was more peak current available to energize L_{s} before this transition, compared to the QA and QB turnoff/on.

Figure 13-2. $\mathbf{t}_{\text {CDSET }}$ to Achieve Valley Switching at Light Loads
There is a programmable delay for the turnoff of FET QF after FET QA turnoff ($\mathrm{t}_{\text {AFSET }}$) and the turnoff of FET QE after FET QB turnoff ($\mathrm{t}_{\text {BESET }}$). A good place to set these delays is 50% of $\mathrm{t}_{\text {ABSET }}$. This will ensure that the appropriate synchronous rectifier turns off before the AB ZVS transition. If this delay is too large it will cause OUTE and OUTF not to overlap correctly and it will create excess body diode conduction on FETs QE and QF.

$$
\begin{equation*}
\mathrm{t}_{\mathrm{AFSET}}=\mathrm{t}_{\mathrm{BESET}}=\mathrm{t}_{\mathrm{ABSET}} \times 0.5 \tag{138}
\end{equation*}
$$

The resistor divider formed by $\mathrm{R}_{\mathrm{CA} 1}$ and $\mathrm{R}_{\mathrm{CA} 2}$ programs the $\mathrm{t}_{\text {AFSET }}$ and $\mathrm{t}_{\text {BESET }}$ delay range of the UCC28950/1. Select a standard resistor value for R_{CA}.

Note

$t_{\text {EFSET }}$ and $t_{\text {BESET }}$ can be programmed between 32 ns to 1100 ns .

$$
\begin{equation*}
\mathrm{R}_{\mathrm{CA} 1}=8.25 \mathrm{k} \Omega \tag{139}
\end{equation*}
$$

The voltage at the $A_{\text {DELEF }}$ pin of the UCC28950/1 ($\mathrm{V}_{\text {ADELEF }}$) needs to be set with $\mathrm{R}_{\mathrm{CA} 2}$ based on the following conditions.

If $\mathrm{t}_{\mathrm{AFSET}}<170 \mathrm{~ns}$ set $\mathrm{V}_{\mathrm{ADEL}}=0.2 \mathrm{~V}$, $\mathrm{t}_{\mathrm{ABSET}}$ can be programmed between 32 ns and 170 ns :
If $\mathrm{t}_{\mathrm{ABSET}}>$ or $=170 \mathrm{~ns}$ set $\mathrm{V}_{\mathrm{ADEL}}=1.7 \mathrm{~V}$, $\mathrm{t}_{\mathrm{ABSET}}$ can be programmed between 170 ns and 1100 ns :
Based on $\mathrm{V}_{\mathrm{ADELEF}}$ selection, calculate $\mathrm{R}_{\mathrm{CA} 2}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{CA} 2}=\frac{\mathrm{R}_{\mathrm{CA} 1} \times \mathrm{V}_{\mathrm{ADELEF}}}{5 \mathrm{~V}-\mathrm{V}_{\mathrm{ADELEF}}} \approx 4.25 \mathrm{k} \Omega \tag{140}
\end{equation*}
$$

Select the closest standard resistor value for $\mathrm{R}_{\mathrm{CA} 2}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{CA} 2}=4.22 \mathrm{k} \Omega \tag{141}
\end{equation*}
$$

Recalculate $\mathrm{V}_{\text {ADELEF }}$ based on resistor divider selection:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ADELEF}}=\frac{5 \mathrm{~V} \times \mathrm{R}_{\mathrm{CA} 2}}{\mathrm{R}_{\mathrm{CA} 1}+\mathrm{R}_{\mathrm{CA} 2}}=1.692 \mathrm{~V} \tag{142}
\end{equation*}
$$

The following equation was used to program $t_{A F S E T}$ and $t_{\text {BESET }}$ by properly selecting resistor $R_{\text {DELEF }}$.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DELEF}}=\frac{\left(\mathrm{t}_{\mathrm{AFSET}} \times 0.5-4 \mathrm{~ns}\right)}{\mathrm{ns}} \times \frac{\left(2.65 \mathrm{~V}-\mathrm{v}_{\mathrm{ADELEF}} \times 1.32\right) \times 10^{3}}{5} \times \frac{1}{1 \mathrm{~A}} \approx 14.1 \mathrm{k} \Omega \tag{143}
\end{equation*}
$$

A standard resistor was chosen for the design.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{DELEF}}=14 \mathrm{k} \Omega \tag{144}
\end{equation*}
$$

Resistor $R_{\text {TMIN }}$ programs the minimum duty cycle on time ($\mathrm{t}_{\text {MIN }}$) that the UCC28950/1 (Pin 9) can demand before entering burst mode. If the UCC28950/1 controller tries to demand a duty cycle on time of less than $t_{\text {MIN }}$ the power supply will go into burst mode operation. Please see the UCC28950/1 data sheet for details regarding burst mode. For this design we set the minimum on time to 100 ns .

$$
\begin{equation*}
\mathrm{t}_{\mathrm{MIN}}=100 \mathrm{~ns} \tag{145}
\end{equation*}
$$

The minimum on time is set by selecting $R_{\text {TMIN }}$ with the following equation.

$$
\begin{align*}
& \mathrm{R}_{\text {TMIN }}=12.1 \mathrm{k} \Omega \tag{146}\\
& \mathrm{R}_{\text {TMIN }}=\frac{\left(\mathrm{t}_{\mathrm{MIN}}-15 \mathrm{~ns}\right) \times 10^{3}}{6.6 \mathrm{~s}} \approx 12.9 \mathrm{k} \Omega \tag{147}
\end{align*}
$$

A standard resistor value is then chosen for the design.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{TMIN}}=12.1 \mathrm{k} \Omega \tag{148}
\end{equation*}
$$

There is a pin that is provided for setting up the converter switching frequency (Pin 10). The frequency can be selected by adjusting timing resistor R_{T}.

TEXAS

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\left(\frac{2.5 \times 10^{6 \frac{\Omega \mathrm{~Hz}}{\mathrm{~V}}}}{\frac{\mathrm{f}_{\mathrm{S}}}{2}}-\frac{\Omega}{\mathrm{V}}\right) \times\left(\mathrm{V}_{\mathrm{REF}}-2.5 \mathrm{~V}\right) \times 2.5 \times 10^{3} \approx 60 \mathrm{k} \Omega \tag{149}
\end{equation*}
$$

Select a standard resistor for the design.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=61.9 \mathrm{k} \Omega \tag{150}
\end{equation*}
$$

14 Turning SR FETs-off Under Light Load Conditions

To increase efficiency at lighter loads the UCC28950/1programmed (Pin 12, DCM) under light load conditions to turn off the synchronous FETs on the secondary side of the converter (Q_{E} and Q_{F}). This threshold is programmed with resistor divider formed by R_{E} and R_{G}. This $D C M$ threshold needs to be set at a level before the inductor current goes discontinues. The following equation sets the synchronous rectifiers to turnoff at roughly 15\% load current.

$$
\begin{align*}
& \mathrm{V}_{\mathrm{RS}}=\frac{\left(\frac{\mathrm{P}_{\text {OUT }} \times 0.15}{\mathrm{~V}_{\mathrm{OUT}}}+\frac{\Delta \mathrm{I}_{\mathrm{LOUT}}}{2}\right) \times \mathrm{R}_{\mathrm{S}}}{\mathrm{a} 1 \times \mathrm{a} 2}=0.29 \mathrm{~V} \tag{151}\\
& \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \tag{152}
\end{align*}
$$

Select a standard resistor value for R_{G}.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{E}}=\frac{\mathrm{R}_{\mathrm{G}}\left(\mathrm{~V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{RS}}\right)}{\mathrm{V}_{\mathrm{RS}}} \approx 16.3 \mathrm{k} \Omega \tag{153}
\end{equation*}
$$

Select a standard resistor value for this design

$$
\begin{equation*}
\mathrm{R}_{\mathrm{E}}=16.9 \mathrm{k} \tag{154}
\end{equation*}
$$

15600 W FSFB Detailed Schematic and Test Data

Figure 15-1. Daughter Board Schematic

Note

Black triangles designate not populated.

Figure 15-2. Power Stage Schematic

Note

It is recommended to use an RCD clamp to protect the output synchronous FETs from over voltage due to switch node ringing. This RCD clamp is formed by diodes D4, D6 and resistor R6, R8 and R9 and capacitor C 1 .

TEXAS INSTRUMENTS

Figure 15-3. 600-W Phase Shifted Full Bridge Efficiency
Full bridge gate drives and primary switch nodes $\left(\mathrm{QB}_{\mathrm{d}}\right.$ and $\left.\mathrm{QD}_{\mathrm{d}}\right)$ at $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$.

Figure $15-4$. Q4 $_{\mathrm{g}}$ Q4 $_{\mathrm{d}}, \mathrm{V}_{\text {IN }}=390 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$

Figure $15-5$. Q3 $_{\mathrm{g}}$ Q3 $_{\mathrm{d}}, \mathrm{V}_{\text {IN }}=390 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$

Full bridge gate drives and switch nodes at $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$

Figure 15-6. $\mathrm{Q} 4_{\mathrm{g}}$ Q4 ${ }_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~A}$

Figure 15-7. Q3 $_{\mathrm{g}} \mathrm{Q3}_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$

Note

Abstract

Switch node $Q B_{d} / Q 4_{d}$ is valley switching and node $Q D_{d} / Q 3_{d}$ has achieved $Z V S$. It is not uncommon for switch node $Q D_{d} / Q 3_{d}$ to obtain $Z V S$ before $Q B_{d} / Q 4_{d}$. This is because during the $Q D_{d} / Q 3_{d}$ switch node voltage transition, the reflected output current provides immediate energy for the LC tanking at the switch node. Where at the $\mathrm{QB}_{\mathrm{d}} / \mathrm{Q} 4_{\mathrm{d}}$ switch node transition the primary has been shorted out by the high side or low side FETs in the H bridge. This transition is dependent on the energy stored in L_{s} and L_{LK} to provide energy for the LC tanking at switch node $\mathrm{QB}_{\mathrm{d}} / \mathrm{Q} 4_{\mathrm{d}}$ making it take longer to achieve ZVS.

Full bridge gate drives and switch nodes at $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=25 \mathrm{~A}$

Figure 15-8. Q4 $_{\mathrm{g}}$ Q4 $\mathrm{d}_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=25 \mathrm{~A}$

Figure 15-9. Q3 $_{\mathrm{g}}$ Q3 $_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=25 \mathrm{~A}$

Note

When the converter is running at 25 A both switch nodes are operating into zero voltage switching (ZVS). It is also worth mentioning that there is no evidence of the gate miller plateau during gate driver switching. This makes sense because the voltage across the drain and source of FETs QA through QD has already transition before the gate drives have transitioned. INSTRUMENTS

Full bridge gate drives and switch nodes at $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, I IUTT$=50 \mathrm{~A}$

Figure $15-10$. Q4 $_{\mathrm{g}}$ Q4 $_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~A}$

Figure 15-11. Q3 $_{\mathrm{g}}$ Q3 $_{\mathrm{d}}, \mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~A}$

Note

ZVS was maintained from 50% to 100% output power.

16 References

1. Bill Andreycak, Phase Shifted, Zero Voltage Transition Design Considerations and the UC3875 PWM Controller Unitrode Application Note SLUA107, September 5, 1999
2. Lazlo Balogh, Design and Application Guide for High Speed Mosfet Gate Drive, Unitrode Power Supply Design Seminar, Topic 2, 2001
3. Colin Gillmore, Making the Correct Choice: UCC28950-Q1 or UCC28951-Q1 , Application Note SLUA853, December 2017, Topic 2, 2001
4. Texas Instruments, UCC28950 Green phase-shifted full-bridge controller with Synchronous Rectification control, data sheet
5. Texas Instruments, UCC28951 Green phase-shifted full-bridge controller with Synchronous Rectification control, data sheet

17 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision C (June 2011) to Revision D (March 2022)

- Updated to include UCC28951 and update equations to new TI format throughout publication

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

