ABSTRACT

The bq76PL536 can be stacked vertically to monitor up to 192 cells without additional isolation components between the integrated circuits. A high-speed serial peripheral interface (SPI) bus operates between each bq76PL536 to provide reliable communication through a high-voltage battery cell stack. This application report discusses the communication basics of addressing, reading, and writing for the Texas Instruments bq76PL536, a stackable 3-to-6 series battery pack protector and analog front end.

Although only the bq76PL536 is referred to in this document, all information herein applies equally to the bq76PL536A and the bq76PL536AQ1.

1 bq76PL536 Packet Formats

The following illustrations show the Read and Write packet formats of the bq76PL536.

2 bq76PL536 Addressing, Reading, and Writing

2.1 Addressing

When powering up the integrated circuit (IC), the default address is 0. To change it to address 1, write: 01 3B 01 02. Other addresses require that the last two bytes change.

• Write to address 0 = 01
• Write to address control registers = 3B
• Write address to 1 = 01
• Write the CRC = 02

Now the device answers to address 1.

Note the following two things.
1. The length byte is implied because you can only write one byte at a time. No length byte is sent with Write packets.

2. The chip is manufactured with CRC enabled, so you must transmit the CRC. CRCs protect against communications errors.

Subsequent devices must receive unique addresses, usually sequential from 0x01 to 0xnn, where nn < 0x3F.

2.2 Reading Data

The following sequence occurs in reading the cell 1 ADC (the cell_1 registers are 0x03 MSB and 0x04 LSB) from the device at 0x01.

Both can be read in one 2-byte read like this: 02 03 02 00 00 00

- Read (logical) address 1 = 02
- Start read at register 3 = 03
- Read 2 bytes (registers 3 and 4) = 02
- Send 0 to clock in byte 1 (register 3 data) = 00*
- Send 0 to clock in byte 2 (register 4 data) = 00*
- Send 0 to clock in CRC = 00*

*Padding bytes sent by the host CPU to clock out data bytes from the bq76PL536; the value is unimportant

The LSB in the address field is the R/W bit. The 6-bit logical address field is shifted one position left. So, to address device 1 in this example, a "2" is sent for the read address, and a "3" for the write address.

3 bq76PL536 Sample Data Exchange

The Address is 6 bit + LSB R/W bit:

- 0 for R
- 1 for W

Therefore, a read of board 1 Cell voltage is as follows:

<table>
<thead>
<tr>
<th>SEND</th>
<th>IC Addr</th>
<th>Starting Reg</th>
<th>No. Bytes</th>
<th>Clk1 for data</th>
<th>Clk2 for data</th>
<th>Clk3 for CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>0x03</td>
<td>0x02</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

The expected return is as follows: (On a read the device generates/returns the CRC)

<table>
<thead>
<tr>
<th>RCV (clocked out by)</th>
<th>ADDR + START + LEN</th>
<th>(new data) Reg_0x03_result + Reg_0x04_result + IC_supplied_CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00 0x00 0x00</td>
<td>0x00 0x00</td>
<td>0xMSB 0xLSB 0xCRC</td>
</tr>
</tbody>
</table>

You then can calculate the CRC based on the received message to confirm that the transmission was successful:

Transaction example:

Data sent to target: 02 03 02 00 00 00
Data returned from target: 00 00 00 19 9A 0D
Calculate the CRC: function_CRC (02 03 02 19 9A) = 0D
4 Simple Stack Addressing Algorithm

Each device in the stack must receive a unique address between 0x01 and 0x3E. Address 0x00 is reserved for device discovery and address 0x3F is reserved for BROADCAST messages to all devices. Typical addressing assigns address 1 to the base device, and incremental addresses go up (north) in the stack; 1-2-3-… n.

All devices:
ADDRESS = 0x?? (unknown)
expected = # devices in stack

Assign ADDRESS
Write Dev[0]ADDR_CTRL = n

READ Dev[n] ADDR_CTRL[]

Validate device was successfully found and addressed.

This loop finds one “new” device per iteration.

(Implied: n == look_for here)

This loop resets all addressed devices, then looks for all previously found+1 devices again. Corrects any addressing faults in the stack.

(Implied: n == expected here)

All devices found?

START
look_for = 0;

Send
BROADCAST_RESET

look_for++;
n = 0;
n++;

Assign unique address (n) to this device @address 0x00

Validation test: Read same device for unique address (n) just assigned

Note: validated = one more than devices found at this point

Note that the foregoing example assumes that this device first has been initialized to be address 1.
namespace Communications
{
 class CRC8
 {
 private byte[] CrcTable = {
 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15,
 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5,
 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xC0, 0xCD,
 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85,
 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2,
 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32,
 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
 0x6F, 0x68, 0x61, 0x66, 0x6C, 0x6D, 0x64, 0x63,
 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C,
 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xE6, 0xEC,
 0xC1, 0xC6, 0xCF, 0xC8, 0xD0, 0xD3, 0xD4, 0xD7,
 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
 0x19, 0x1E, 0x17, 0x10, 0x02, 0x0B, 0x0C, 0x00,
 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B,
 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
 0x03, 0x08, 0x05, 0x02, 0x17, 0x14, 0x1B, 0x12,
 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
 0xCE, 0xCA, 0xC7, 0xC0, 0x96, 0x91, 0x98, 0x9F,
 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7,
 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF,
 0xFD, 0xF4, 0xF3};

 /// <summary>
 /// Calculates an 8 bit CRC
 /// <summary>
 /// <param name="buffer">An array of bytes</param>
 /// <returns>A one byte CRC</returns>
 public byte Pec(byte[] buffer)
 {
 byte crc = 0;
 int temp = 0;
 for (int I = 0; < buffer.Length; I++)
 {
 temp = crc ^ buffer[I];
 crc = CrcTable[temp];
 }
 return crc;
 }
 }
}

// Copyright © Texas Instruments. All rights reserved.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE.

CRC:
The CRC calculation implements the method used in the Smart Battery (SBData) over SMBUS – NBPC battery. It is also known as ATM-8. See the SMBUS Specification Sec 5.4.1, 5.4.1.3, at www.smbus.org/specs. For more specific implementation information, see http://smbus.org/faq/faq.htm
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>Wireless</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page
www.e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated