This document describes the changes made from bq27510-G1 to bq27510-G2. The latest ordering information and data sheet is available on the Texas Instruments (TI) Web site.

NOTE that bq27510-G1 uses FW version 1.12 and the bq27510-G2 uses FW version 1.23.

1 Introduction

The bq27510-G2 firmware version 1.23 has been released to enable several feature additions. The following new orderable part numbers have been released with ship preprogrammed with to the new version of firmware:

• BQ27510DRZR-G2
• BQ27510DRZT-G2

The latest version of the evaluation software is required to be able to read and write all the data flash configuration locations. The necessary evaluation software and the corresponding V1.23 SENC file can be downloaded from the bq27510-G2 product folder on the TI Web site at www.ti.com. Existing bq27510 or bq27510-G1 (including EVMs) can be upgraded to the latest firmware version by following the instructions in application report SLUA453.

NOTE: If a golden image created for another version of bq27510-G1 is loaded into an integrated circuit (IC) running firmware version 1.23, the IC will become nonfunctional and must be replaced. Ensure that all instructions in application report Updating Firmware With the bq2750x and EVM (SLUA453) are followed if upgrading ICs or converting your production line to bq27510-G2. The best practice is to generate a new golden image (DFI file) for bq27510-G2.

NOTE: bq27510-G1 golden image can not be directly used for bq27510-G2. The chemical ID has to be re-determined as the bq27510-G2 is using different chemistry profile structure. The cell chemical ID need to be determined for bq27510-G2 and new golden image has to be re-generated based on the new ID.
## Table 1. Change Details

<table>
<thead>
<tr>
<th>CHANGE</th>
<th>bq27510-G1</th>
<th>bq27510-G2</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Manufacturer Info Block C</td>
<td>Has Manufacturer Block C</td>
<td>No Manufacturer Block C</td>
<td>Save memory space</td>
</tr>
<tr>
<td>Add two temperature coefficients and normalize the Ra to 25C</td>
<td>One temperature coefficient; Ra table is normalized at 0C</td>
<td>Two temperature coefficients; Ra table is normalized at 25C</td>
<td>Improve low temperature performance</td>
</tr>
<tr>
<td>Thermal modeling added. This accounts for cell heating during discharge</td>
<td>No thermal modeling</td>
<td>Added thermal modeling to account for cell heating during the discharge</td>
<td>Improve low temperature performance. New data flash parameters are added: Thermal Rise Factor and Thermal Time Constant</td>
</tr>
<tr>
<td>Transient modeling is added</td>
<td>No transient modeling</td>
<td>Added transient modeling</td>
<td>Better low temperature simulation performance. Improve gauging accuracy at low temperature and high discharge rate. New data flash parameters are added: TransientFactorCharge, TransientFactorDischarge</td>
</tr>
<tr>
<td>Add data flash parameters: OpConfig B</td>
<td>No OpConfig B</td>
<td>Add OpConfig B with RFACTSTEP bit</td>
<td>RFACTSTEP is used to enable resistance update range set by Min/Max Res Factor</td>
</tr>
<tr>
<td>Use ADC current for OCV compensation on battery insert, reset or wake from hibernate</td>
<td>No current compensation for OCV measurement</td>
<td>ADC current is used for compensation</td>
<td>Improve OCV measurement accuracy under load</td>
</tr>
<tr>
<td>Add delay before reading V, to allow V to settle after battery insertion</td>
<td>No delay</td>
<td>Delay added to allow voltage to settle at battery insertion</td>
<td>Improve first voltage measurement accuracy</td>
</tr>
<tr>
<td>Reduce BAT_GD assertion time after battery insertion</td>
<td>BAT_GD asserted for 2 seconds after battery insertion</td>
<td>BAT_GD asserted for 1.7~1.8 seconds after battery insertion</td>
<td>Reduce gauge initialization time</td>
</tr>
<tr>
<td>Fixed issue of CHG_INH and XCHG clearing if FC = 1</td>
<td>CHG_INH and XCHG will be cleared if FC = 1 even with temperature outside safety threshold</td>
<td>CHG_INH and XCHG will not clear when temperature is outside the safe range set by data flash even if FC = 1</td>
<td>Bug fix in firmware</td>
</tr>
<tr>
<td>Disable I2C engine during DF writing. This is configurable in OpConfig using I2C_NACK bit</td>
<td>I2C clock will stretch during DF writing</td>
<td>If the I2C_NACK is set, I2C engine will NACK the command during the DF update. I2C engine will clock stretch if the bit is cleared.</td>
<td>I2C communication improvement</td>
</tr>
<tr>
<td>Add data flash parameter: Ra Max Delta</td>
<td>No Ra Max Delta parameter</td>
<td>Add Data flash parameter to limit maximum allowed Ra update. It should be set to 15% of uncompressed* grid 4 Ra value after optimization cycle.</td>
<td>Improve Ra update accuracy</td>
</tr>
<tr>
<td>Add OpConfigB.SleepWakeChg</td>
<td>No OpConfigB.SleepWakeChg</td>
<td>Addition of average accumulated charge during sleep. This feature is enabled by setting OpConfigB.SleepWakeChg.</td>
<td>Algorithm improvement</td>
</tr>
<tr>
<td>Add constrain on Ra update condition</td>
<td>Ra will updated even the Qmax is not learned</td>
<td>Ra is not updated if the Qmax is not learned</td>
<td>Algorithm improvement</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not authorized for use in safety-critical applications (such as life support) unless the TI products are specifically designated by TI as "Military Grade." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

**Products**
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- RF/IF and ZigBee® Solutions: www.ti.com/lprf

**Applications**
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Communications and Telecom: www.ti.com/communications
- Computers and Peripherals: www.ti.com/computers
- Consumer Electronics: www.ti.com/consumer-apps
- Energy: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Security: www.ti.com/security
- Space, Avionics & Defense: www.ti.com/space-avionics-defense
- Video and Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated