ABSTRACT

This document describes the changes made from bq27520-G3 to bq27520-G4. The latest ordering information and data sheet is available on the Texas Instruments (TI) Web site.

NOTE:
- bq27520-G3 uses FW version 3.24 and the bq27520-G4 uses FW version 3.29
- bq27520-G3 ICs can be upgraded with bq27520-G4 firmware to achieve identical functionality.

1 Introduction

bq27520-G4 firmware version 3.29 has been released to enable several feature additions and performance improvements. The following new orderable part numbers have been released which ship pre-programmed with this new version of firmware:

- bq27520YZFR-G4
- bq27520YZFT-G4

The latest version of the evaluation software is required to be able to read and write all the data flash configuration locations. The necessary evaluation software and the corresponding v3.29 SENC file can be downloaded from the bq27520-G4 product folder on ti.com. Existing bq27520 (including EVMs) can be upgraded to the latest firmware version by following the instructions in application note SLUA453A.

NOTE:
If a golden image created for another version of bq27520 is loaded into an IC running firmware version 3.29, the IC becomes non-functional and must be replaced. Please ensure all instructions in SLUA453A are followed if upgrading ICs or converting your production line to bq27520-G4.

The best practice is to generate a new golden image (DFI file) for bq27520-G4.

2 Change Details

Table 1. Change Details

<table>
<thead>
<tr>
<th>Change</th>
<th>bq27520-G3</th>
<th>bq27520-G4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon version update</td>
<td>ICs ship with silicon version A3.</td>
<td>ICs ship with silicon version A7 to improve TI production testability and design robustness.</td>
<td>Both IC versions can run either version of FW.</td>
</tr>
<tr>
<td>Support for larger capacity batteries</td>
<td>Support battery capacity up to 8 Ah.</td>
<td>Support battery capacities up to 32 Ah using Design Energy Scale feature.</td>
<td>New feature</td>
</tr>
<tr>
<td>Reserve capacity register change</td>
<td>Reserve Capacity-mW label used.</td>
<td>Reserve Cap-m/CW label used since units depend on setting of Design Energy Scale.</td>
<td>New feature</td>
</tr>
</tbody>
</table>

I²C is a trademark of NXP.
Table 1. Change Details (continued)

<table>
<thead>
<tr>
<th>Change</th>
<th>bq27520-G3</th>
<th>bq27520-G4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Rate register change</td>
<td>User rate-mW label used.</td>
<td>User Rate-mC/W label used since units depend on setting of Design Energy Scale.</td>
<td>New feature</td>
</tr>
<tr>
<td>SOC smoothing</td>
<td>SOC Smoothing feature not present.</td>
<td>SOC Smoothing added to facilitate smooth transition of reported SOC during charge and discharge. Added register bits to new Operation Configuration D register. ● [SMTHEN] ● [RCJUMP0K]</td>
<td>New feature</td>
</tr>
<tr>
<td>Fast Qmax Update</td>
<td>Feature did not exist.</td>
<td>Fast Qmax Update added to facilitate Qmax updates. Feature allows computation of Qmax based on full charge and end of discharge conditions without battery relaxation. Added dataflash register Operation Configuration E with configuration options.</td>
<td>New feature</td>
</tr>
<tr>
<td>Improved Overcharge Handling</td>
<td>Possibility to get into overcharge condition due to change in temperature after charge termination or more accumulated charge-after-charge termination.</td>
<td>DODateEOC is updated after charge termination and not updated if a significant temperature change occurs after charge termination. Charge accumulation after charge termination is tracked for a more accurate calculation of DOD. Added dataflash register bit: ● [CHGDDOEOC] in Operation Configuration D</td>
<td>New feature</td>
</tr>
<tr>
<td>Additional SOC_INT configuration flexibility</td>
<td>Some SOC_INT trigger events could not be individually enabled or disabled. Operation Configuration D register did not exist.</td>
<td>New DataFlash register Operation Configuration D contains configuration bits to enable/disable individual SOC_INT trigger events with more flexibility. This includes separate enable/disable bits for over-temp interrupts, algorithm state change interrupts, and dataflash update interrupts.</td>
<td>New feature</td>
</tr>
<tr>
<td>Disable charger after full charge is reached</td>
<td>Feature not available.</td>
<td>Added new Pin Function Code (PFC) option 3 which allows the BAT_GD pin to follow the [FC] “full charge” bit of the Flags() register.</td>
<td>New feature</td>
</tr>
<tr>
<td>Final Voltage feature modification</td>
<td>If Voltage() is below dataflash setting of Final Voltage for one second, RemainingCapacity() and SOC() are forced to 0.</td>
<td>If Voltage() is below Final Voltage for a time of Final Volt Time (both in dataflash), RemainingCapacity() and SOC() are forced to 0. Default setting of Final Volt Time is two seconds and is user configurable.</td>
<td>New feature</td>
</tr>
<tr>
<td>New configuration registers</td>
<td>Operation Configuration D and Operation Configuration E dataflash registers did not exist.</td>
<td>Operation Configuration D and Operation Configuration E dataflash registers added for additional options.</td>
<td>New feature</td>
</tr>
<tr>
<td>Larger thresholds for low battery warning</td>
<td>SOC1 Set Threshold and SOC1 Clear Threshold are each 1 byte in size.</td>
<td>SOC1 Set Threshold and SOC1 Clear Threshold are each 2 bytes in size to support needs of larger capacity battery packs.</td>
<td>Feature improvement</td>
</tr>
<tr>
<td>Standard Command addresses</td>
<td>StateOfHealth(), CycleCount(), and StateOfCharge() command addresses are 0x28…0x2d.</td>
<td>StateOfHealth(), CycleCount(), and StateOfCharge() command addresses are 0x1C…0x21.</td>
<td>Feature change</td>
</tr>
<tr>
<td>State Of Health feature update</td>
<td>Periodic StateOfHealth() simulations could use the current temperature instead of 25°C.</td>
<td>Periodic StateOfHealth() simulations are always forced to use 25°C.</td>
<td>Bug fix</td>
</tr>
<tr>
<td>Wake from HIBERNATE</td>
<td>Can possibly wake from HIBERNATE upon rising edge of PICT™ bus.</td>
<td>Device only wakes from HIBERNATE if PICT traffic is addressed to the fuel gauge.</td>
<td>Bug fix</td>
</tr>
<tr>
<td>Standard Command Updates</td>
<td>TimeToFull(), AveragePower(), MaxLoadCurrent(), TTEatConstantPower(), MaxLoadTimeToEmpty(), NormalizedImpedanceCal(), DataLogIndex(), and DataLogBuffer() commands present.</td>
<td>TimeToFull(), AveragePower(), TTEatConstantPower(), MaxLoadCurrent(), MaxLoadTimeToEmpty(), NormalizedImpedanceCal(), DataLogIndex(), and DataLogBuffer() commands removed to recover code space for new features.</td>
<td>Feature removal</td>
</tr>
<tr>
<td>Subcommand Update</td>
<td>IT_DISABLE, FACTORY_RESTORE, ENABLE_DLOG, and DISABLE_DLOG Control() subcommands present.</td>
<td>IT_DISABLE, FACTORY_RESTORE, ENABLE_DLOG and DISABLE_DLOG Control() subcommands removed to recover code space for new features.</td>
<td>Feature removal</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio www.ti.com/audio
Amplifiers amplifier.ti.com
Data Converters dataconverter.ti.com
DLP® Products www.dlp.com
DSP dsp.ti.com
Clocks and Timers www.ti.com/clocks
Interface interface.ti.com
Logic logic.ti.com
Power Mgmt power.ti.com
Microcontrollers microcontroller.ti.com
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation www.ti.com/automotive
Communications and Telecom www.ti.com/communications
Computers and Peripherals www.ti.com/computers
Consumer Electronics www.ti.com/consumer-apps
Energy and Lighting www.ti.com/energy
Industrial www.ti.com/industrial
Medical www.ti.com/medical
Security www.ti.com/security
Space, Avionics and Defense www.ti.com/space-avionics-defense
Video and Imaging www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated