Enabling High-Current Hotswap Applications Using the TPS2393A

Oliver Ou
Power Management Products/Filed Applications

ABSTRACT

The TPS2393A integrated circuit is a hotswap controller optimized for the application of ~48 V systems. The TPS2393A, which is widely used in numerous applications, introduces the following competitive features:

- Wide input supply range
- Programmable current limit
- UV/OV protection
- Insertion detection
- Power good indication
- Alert

The TPS2393A is designed to provide load current slew rate control to manage inrush into the load and also has peak magnitude current limiting. Normally, the actual nominal load current is always smaller than current limit threshold with a safe margin. However, in some situations, the application needs much higher nominal current into the load. This situation can create a lot of stress on the FET used to control inrush into the application (for example, in a system requiring ~48 V at a nominal 10 A). At initial turn-on, the V_{DS} across the FET is 48 V if the current is limited to 10 A, which would be 480 W initially. Of course, as V_{DS} decreases the power also decreases. This makes FET selection very problematic for the application.

This paper provides a simple and efficient method to solve this problem and an easy-to-use way to extend the application of the TPS2393A.
Contents

Introduction .. 3
Achieve a High-Load Hotswap .. 5
Conclusion ... 10
References ... 10

Figures

Figure 1. TPS2393 Current Control Loop ... 3
Figure 2. Ramp Generator Block ... 4
Figure 3. Typical Hotswap Schematic .. 4
Figure 4. TPS2393 Waveform .. 5
Figure 5. Ideal Current Waveform in Different Requirement ... 6
Figure 6. SOA Curve of FDB047N10 ... 7
Figure 7. Adding Bias Current to CHange the Actual Load ... 8
Figure 8. Startup With Bias Current .. 9
Introduction

TPS2393A is a full-featured –48 V hotswap power management IC. As the most popular hotswap controller, TPS2393A uses an external N-channel power FET and a low-value current sensing resistor to control load power up, which operates as controlled-current. Figure 1 is a block diagram of the circuit. A reference voltage is applied to the noninverting input of the linear current amplifier (LCA). Load magnitude information is fed to the inverting input as the drop across sensing resistor R_{SNS}. The LCA slews the gate of the pass FET to limit the load current to reference value. The VREF reference is clamped at 40 mV, as shown in Figure 2. Therefore, current flowing in the load during turn-on is limited to the value given by $I_{MAX} \leq 40mV / R_{SNS}$.

(IMAX is the maximum load current.)

Figure 1. TPS2393 Current Control Loop
Figure 2. Ramp Generator Block

Figure 3 shows the typical hotswap schematic. Figure 4 is a waveform with current limit at 2 A.

Figure 3. Typical Hotswap Schematic
NOTE:

V_{OUT} is actually V_{DRAIN} of the FET. At $T = 0$ the VDS is approximately 48 V; as the FET turns on this approaches zero. The contact bouncing shows a hotswap or board insertion event. This is why to the left of the graph VDS is 0 (no power to board). Upon insertion, the voltage bounces and then rises to 48 V. The gate starts to slew and let current into the load, and during this time V_{DS} decreases as I_{DS} increases.

Achieve a High-Load Hotswap

To avoid violating the safety operation area (SOA) curve with much higher load current, the maximum current amplitude must be limited during inrush to a reasonable value.
For example, the typical charging current in bulk capacitor during turn-on is 2A (40mV/20mohm); therefore, the actual load current must be less than 2 A, as shown in upper diagram in Figure 4. But in some applications, the load current can be much higher, from 5 to 50 A of load current, as shown in lower diagram in Figure 4. Of course, this requires a very low value for sensor resistor R_{sns} to set the maximum current limit into the load. However, at these higher currents, I_{MAX} is also very high. It is difficult to select a proper current limit FET. For example, the normal load current is 10 A, and the value of R_{sns} must be lower than 4mohm (40mV/10A). I_{MAX} will exceed 10 A as well.

Figure 5. Ideal Current Waveform in Different Requirement

Assuming the normal load current is 10 A and considering the thermal rise of FET, we should choose a correct Rdson. For example, choose FDB047N10: $R_{\text{dson}} = 4.7\, m\Omega$;

$$R_{\text{egsa}} = 62.5 \, ^{\circ}\text{C/NW};$$

Assuming an ambient temperature of $T_A = 40 \, ^{\circ}\text{C}$, the junction temperature of FET can be calculated as follows:

$$T_{\text{mosfet}} = T_{\text{rise}} + T_A = (I_{\text{load}})^2 \times R_{\text{dson}} \times R_{\text{egsa}} + T_A = 69.4 \, ^{\circ}\text{C}$$

At steady state, the thermal rise is okay. Also, it is necessary to review the SOA graphs to determine if FET can handle the transient power dissipation at startup. Figure 5 show the typical maximum SOA of FDB047N10.
At 25°C case temperature and 48 V input condition, the running time should be less than 1 mS with 10 A constant current (see the red dashed line in Figure 5) but it can support approximately 10 mS running time with 2 A constant current (see the blue dashed line in Figure 5). In another way, small current will need more time to charger bulk capacitor to input voltage. So, we should balance the reliability and charger time to choose a suitable current level.

Also, remember that the SOA graph on the FET data sheet is based on 25°C ambient case temperature. In an actual power system, the ambient case temperature is higher than this, thus we must consider the temperature derating. Application note *Hotswap Design using TPS2490/91 and FET Transient Thermal Response* is a good reference.

![Figure 6. SOA Curve of FDB047N10](image)

A simple way to meet the requirement of a high-output current hotswap is to separate the LCA current limit threshold from over current (OC) limit threshold. Unfortunately, they are combined in TPS2393A.
When reading the data sheet carefully, we can find that the power good indication pin (/PG) is active-low when the following two conditions are met:

- The voltage at the DRAINSNS pin is below the power good threshold (1.35 V).
- The voltage at the IRAMP pin is above 5 V.

Therefore we can use the /PG signal to change the current level of pass FET at LCA current limit condition and the overcurrent condition. Figure 6 is the simple schematic.

![Figure 6. Simple Schematic](image)

Figure 7. Adding Bias Current to Change the Actual Load

Because we know that ISENS pin is the negative terminal of LCA, which is clamped to 40 mV, then we can get an equation:

\[
40mV = \frac{4V - 40mV}{R1 + R2} \times R3 = \left(\frac{4V - 40mV}{R1 + R2} + Io \right) \times R4
\]

Io can be simplified as:

\[
Io = \frac{40mV - \frac{4V}{R1 + R2} \times R3}{R4}
\]

In Figure 6, R1 = R2 = 470K, R3 = 680ohm, R4 = 4mohm. So, at startup, the actual load current \(Io \approx 1.3\ \text{A}\). From SOA curve in Figure 5 (see the yellow dashed line), the maximum SOA time with 1.3 A constant load current is close to 100 mS.

Suppose the total output capacitor CLoad = 100 µF, the minimum charger time is:

\[
T_{\text{charge}} = \frac{48V \times 100uF}{1.3A} = 3.7\text{mS}
\]
The TPS2393A also can program the Inrush Slew Rate by a capacitor on the IRAMP pin, thus the actual charge time will be higher than this. The time to charge the load capacitor is less than the maximum SOA time, so the FET is suitable for current design.

The TPS2393A also includes a programmable Fault Timer to protect FET. From the preceding analysis, the value of Fault Time can be set in the range of 3.7 to 100 mS. The timer capacitor can be calculated by the following equation:

\[C_{FAULT} (\mu F) = 14.4 \times T_{FAULT} \text{ (in } \text{ Seconds}) \]

Figure 7 shows the startup waveform, which was tested on EVM board.

![Image of startup waveform](image)

CH1 = Vdrain; CH2 = 48V; CH3 = /PG;

Figure 8. Startup With Bias Current

When the start-up process completes, the /PG signal turns low. The bias current through R2 can be ignored. The maximum load can go up to \(\frac{40mV}{R4} \approx 10A \).

The bias current will change with the bus voltage because R1 is connected directly to bus voltage. If the voltage range on bus is wide, we can add external circuit to provide a fixed reference voltage to R1, and then the bias current will also be fixed.
Conclusion

Even though the TPS2393A has only one relatively low threshold of current limitation, it can be designed for more applications, where load current at steady state must be higher than the charging current during the startup ramping. This paper discusses a method to change to current limit at different operation stages, from rising to settle down.

References

1. TPS2393A data sheet, SLUS536C, Texas Instruments
2. Jim Bird, -48V ATCA Module Hot Swap Using the TPS2393, SLUA318, Texas Instruments
3. Andy Ripanti, Full Featured -48V Hot Swap Power Manager (TPS2392 and TPS2393), Texas Instruments
4. Martin Patoka, Hotswap Design Using TPS2490/91 and FET Transient Thermal Response, Texas Instruments
5. FDB047N10 data sheet, Fairchild Semiconductor
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications

- **Audio and Video**: www.ti.com/audio
- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-electronics
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video
- **TI E2E Community**: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2013, Texas Instruments Incorporated