UCC28722/UCC28720 5W USB BJT Flyback Design Example

Michael O’Loughlin
Senior System Solutions Engineer

Introduction:
In USB and isolated low power converter designs-quasi resonant and discontinuous conduction mode flyback converter topologies are a popular choice, due to their low parts count and relatively low cost. To reduce the cost even further, TI has developed a quasi-resonant/discontinuous current mode flyback controller with primary-side control. This removes the need for optocoupler and TL431 feedback circuitry reducing the cost of these low power designs even more. The control methodology uses a combination of primary peak current amplitude modulation (AM) and frequency modulation (FM) to regulate the output current and voltage please refer to data sheet [1] for controller details. This design example is a theoretical design that shows how to use the UCC28722 in a 5W USB application. The calculations were used to design the UCC28720EVM-212 reference design [2]. Note the UCC28722 is cost reduced version of the UC28720. To reduce the cost of the UCC28722 the internal startup circuit was removed. This device requires a trickle charge resistor from the bulk input voltage during power up.

Design Specifications:

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Input Voltage</td>
<td>90 (V_{INMIN})</td>
<td>115/230</td>
<td>265 (V_{INMAX})</td>
<td>V</td>
</tr>
<tr>
<td>No Load Input Power</td>
<td>50 (P_{INL})</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>4.75</td>
<td>5 (V_{OUT})</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td></td>
<td></td>
<td>100 (V_{RIPPLE})</td>
<td>mVpp</td>
</tr>
<tr>
<td>Output Load Step</td>
<td>4.1 (V_{OTRM})</td>
<td></td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>(0.1 to 0.6A), (0.6 to 0.1A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>1(I_{OUT})</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>74 kHz (f_{MAX})</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Full Load Efficiency</td>
<td>73(η)</td>
<td>74</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Table 1, Design Specifications
Functional Schematic:

Note R_T is not required on UCC28720

Figure 1, UCC28722 5W Offline Flyback Functional Schematic

Selecting R_{CBC} Resistor:
In this design cable compensation was not used and resistor R8 was not populated.
Please refer to the data sheet on how to setup cable compensation [1].

Initial Power Budget:
To meet the efficiency (η) goal an initial power loss budget (P_{BUDGET}) needs to be set.

\[
P_{OUT} = V_{OUT} \times I_{OUT} = 5V \times 1A = 5W
\]

\[
P_{BUDGET} = \left(\frac{P_{OUT}}{\eta} \right) - P_{OUT} \approx 1.849W
\]

Bridge Rectifier Selection ($D_A..D_D$):
For this design a 600V, 0.8A, bridge rectifier from Diodes Incorporated was chosen for the bridge rectifier diode ($D_A..D_D$), part number HD06.

\[
V_{FDA} = 1V, \text{ forward voltage drop of bridge rectifier diode (} V_{FDA} \text{)}
\]
\[
I_{DA} = \left(\frac{P_{OUT}}{\eta \cdot \frac{V_{INMIN} \cdot 2 \cdot \sqrt{2}}{\pi}} \right) = \frac{5W}{0.75 \cdot 90V \cdot \frac{2 \cdot \sqrt{2}}{\pi}} \approx 85mA, \text{ bridge rectifier average diode current (I}_{DA}\right)
\]

\[
P_{DA} = V_{FDM} \cdot I_{DA} = 85mW, \text{ estimate power dissipated in bridge rectifier diode (P}_{DA}\right)
\]

Estimate remaining power budget based on bridge rectifier loss.

\[
P_{BUDGET} = P_{BUDGET} - 2 \times P_{DA} \approx 1.68W
\]

Transformer Calculations (T1):

Transformer demagnetizing duty cycle (D_{MAG}) is fixed to 42.5% based on the UCC28720/2 control law methodology [1].

\[
D_{MAG} = 0.425
\]

\(T_R\) is the estimated period of the LC resonant frequency at the switch node.

\[
T_R = 2\mu s
\]

Calculate maximum duty cycle (D_{MAX}):

\[
D_{MAX} = 1 - D_{MAG} - f_{MAX} \cdot \frac{T_R}{2} = 1 - 0.425 - 74kHz \cdot \frac{2\mu s}{2} = 0.501
\]

Calculate transformer primary peak current (I_{PPK}) based on a minimum flyback input voltage. This calculation includes a factor of 0.6 to account for the reduction in flyback input voltage caused by the ripple voltage across the input capacitors (C_A and C_B).

\[
I_{PPK} = \frac{2 \times P_{OUT}}{\eta \times V_{INMIN} \cdot \sqrt{2} \times 0.6 \times D_{MAX}} = \frac{2 \times 5W}{0.75 \times 90V \cdot \sqrt{2} \times 0.6 \times 0.47} = 358mA
\]

Selected primary magnetizing inductance (L_{PM}) based on minimum flyback input voltage, transformer, primary peak current, efficiency and maximum switching frequency (f_{MAX}).

\[
L_{PM} = \frac{2 \times P_{OUT}}{I_{PPK}^2 \times f_{MAX}} = \frac{2 \times 5W}{(350mA)^2 \times 74kHz} \approx 1.44mH
\]
\[V_{QA_{-CE(SAT)}} = 1V \], estimated voltage drop across transistor during conduction

\[V_{RCS} = 0.78V \], voltage drop across current sense resistor

\[V_{DG} = 0.6V \], estimated forward voltage drop across output diode

Calculate transformer turns ratio primary to secondary \((a_1) \) based on volt-second balance. Note in the following equation \(L_{SM} \) is secondary magnetizing inductance.

\[
a_1 = \frac{N_P}{N_S} = \frac{D_{MAX} \times \left(V_{IN_{MIN}} \sqrt{2} \times 0.6 - V_{QA_{-CE(SAT)}} - V_{RCS} \right)}{D_{MAG} \times (V_{OUT} + V_{DG})} \approx 15.7
\]

\[V_{DDMIN(on)} = 8.15V \], UCC28722 minimum VDD voltage before UVLO turnoff.

\[V_{DE} = 0.6V \], estimated auxiliary diode forward voltage drop

\[V_{OUT_{-INIT}} = 2V \], Minimum voltage on the output when adapter is connected to a device with a depleted battery.

Calculate transformer auxiliary to secondary turns ratio \((a_2) \)

\[
a_2 = \frac{N_A}{N_S} = \frac{V_{DDMIN} + V_{DE}}{V_{OUT_{-INIT}} + V_{DG}} \approx 3.37
\]

Transformer primary RMS current \((I_{PRMS}) \)

\[
I_{PRMS} = I_{PPK} \sqrt{\frac{D_{MAX}}{3}} = 146mA
\]

Transformer secondary peak current RMS current \((I_{SPK}) \)

\[
I_{SPK} = \frac{P_{OUT} \times 2}{V_{OUT} \times D_{MAG}} \approx 4.71A
\]
Transformer secondary RMS current (I_{SRMS})

$$I_{SRMS} = I_{SPK} \sqrt{\frac{D_{MAG}}{3}} \approx 1.77\,A$$

Estimate power dissipated by the UCC28722 IC (P_{IC})

$$V_{DD} = V_{OUT} \times a2 \approx 16.83\,V$$

$$I_{RUN} = 2\,mA$$

$$I_{DRS(MAX)} = 37\,mA$$

$$I_{DRS(MIN)} = 19\,mA$$

$$I_{DRS(AVG)} = \frac{I_{DRS(MAX)} + I_{DRS(MIN)}}{2} \times D_{MAX} = 14\,mA$$

$$P_{IC} = V_{DD} \left(I_{RUN} + I_{DRS(AVG)} \right) \approx 270\,mW$$

Calculate auxiliary winding peak current (I_{APK})

$$I_{APK} = \frac{P_{IC} \times 2}{(V_{OUT} + V_{DE}) \times a2 \times D_{MAG}} = 67\,mA$$

Calculate auxiliary winding RMS current (I_{ARMS})

$$I_{ARMS} = I_{APK} \sqrt{\frac{D_{MAG}}{3}} \approx 25\,mA$$

For this transformer we allow for 3% efficiency loss from the transformer (P_{T1})

$$P_{T1} = P_{OUT} \times 0.03 = 150\,mW$$

Recalculate remaining power budget

$$P_{BUDGET} = P_{BUDGET} - P_{T1} \approx 1.26\,W$$

A Wurth Electronik transformer was designed for this application, part number 7508110151, which has the following specifications:
\[a_1 = 15.42 \]
\[a_2 = 3.2 \]
\[L_{pm} = 1.5 mH \]
\[L_{lk} = 20 \mu H, \text{ primary leakage inductance} \]

Input Capacitor Selection (C_{IN} = C_A + C_B):

Calculate input capacitor charge time \((t_{CH}) \) based on 40% input capacitor ripple voltage.

\[
t_{CH} = \frac{1 - \sin^{-1}\left(\frac{V_{INMIN}\sqrt{2} - V_{INMIN}\sqrt{2} \times 0.6}{V_{INMIN}\sqrt{2}}\right)}{4 \times 47 \text{ Hz}} = 3.4 ms
\]

Calculate flyback average primary current \((I_{PT1}) \) during input capacitor discharge.

\[
I_{PT1} = \frac{P_{OUT}}{\eta \times V_{INMIN} \sqrt{2} + \frac{P_{OUT}}{2}} = \frac{\eta \times V_{INMIN} \sqrt{2} \times 0.6}{2} = 72 mA
\]

Calculate total input capacitance \((C_{IN}) \) based on minimum flyback input voltage and 40% ripple voltage across the input capacitor.

\[
T_{RL} = \frac{1}{2 \times 47 \text{ Hz}} \approx 11 ms, \text{ longest period of the rectified line voltage}
\]
\[
V_{INRipple} = V_{INMIN} \times \sqrt{2} \times 0.4 \approx 50.9 V, \text{ input ripple to the flyback converter}
\]
\[
C_{IN} = \frac{I_{PT1}(T_{RL} - t_{CH})}{V_{INRipple}} \approx 10 \mu F
\]
\[
C_A = \frac{C_B}{2} = 5 \mu F
\]
Calculate input capacitor \((C_A)\) RMS current \((I_{C_ARMS})\) based on 40% input capacitor ripple voltage.

\[
I_{C_{INP}} = \frac{2 \times (C_A + C_B) \times V_{INMIN} \sqrt{2} \times 0.4}{I_{CH}} \approx \frac{311mA}{I_{C_{INP}}}, \text{ peak input capacitor charge current (}I_{C_{INP}}\text{)}
\]

\[
I_{C_{A,RMS}} = \sqrt{\left(\frac{I_{C_{INP}}}{2} \frac{I_{CH}}{\sqrt{3 \times T_{RL}}}\right)^2 + \left(\frac{I_{C_{INP}}}{2} \frac{T_{RL} - I_{CH}}{3 \times T_{RL}}\right)^2 - \left(\frac{I_{PT1}}{2}\right)^2} \approx 82mA
\]

Estimate of capacitor \(C_B\)’s low frequency \((1/T_{RL})\) RMS current \((I_{CB,LFRMS})\)

\[
I_{C_{B,LFRMS}} = I_{C_{A,RMS}}
\]

Estimate of \(C_B\)’s high frequency RMS current \((I_{CB,HFRMS})\)

\[
I_{C_{B,HFRMS}} = \sqrt{\left(I_{PPK} \sqrt{\frac{D_{MAX}}{3}}\right)^2 - \left(I_{PPK} \frac{D_{MAX}}{2}\right)^2} \approx 116mA
\]

Estimate of \(C_B\)’s total RMS current \((I_{CB,RMS})\)

\[
I_{C_{B,RMS}} = \sqrt{\left(I_{C_{B,LFRMS}}\right)^2 + \left(I_{C_{B,HFRMS}}\right)^2} \approx 142mA
\]

For this design 4.7\text{uF}, 400V electrolytic capacitors, from Nichicon part number UVR2G4R7MPD were chosen for the design.

\[
C_A = C_B = 4.7\text{uF}
\]

These capacitors had a measured ESR of 5 ohms at 74 kHz

\[
ESR_{CA} = ESR_{CB} = 5\Omega
\]

Recalculate remaining power budget based on power dissipation by the ESRs in the input capacitors.

\[
P_{BUDGET} = P_{BUDGET} - \left(I_{C_{A,RMS}}\right)^2 \times ESR_{CA} - \left(I_{C_{B,RMS}}\right)^2 \times ESR_{CB} \approx 1.126W
\]
Filter Inductor (L_A):
Filter inductor (L_A) is used for EMI filtering. In this design it is just a place holder and the design has not been optimized for EMI. 470uH inductor from Bourns was chosen, part number RLB0608-471KL. This inductor has a DCR of 6.5 ohms.

\[DCR = 6.5 \Omega \]

Recalculate power budget based on DCR losses

\[P_{BUDGET} = P_{BUDGET} - (I_{PRMS})^2 \times DCR \approx 0.987W \]

Fusible Resistor (R_L):
To limit the inrush current during power and for safety a 10 ohm, 3W fusible resistor from Bourn, part number PWR4522AS10R0JA was placed at the input of this design.

\[R_L = 10 \Omega \]

Recalculate power budget based on estimated R_L losses

\[P_{BUDGET} = P_{BUDGET} - \left(\frac{P_{OUT}}{V_{INMIN} \times \eta} \right)^2 \times R_L \approx 0.929W \]

Current Sense Resistor (R_CS):
For this design 2.15 ohm resistor was selected based on a nominal maximum current sense signal of 0.78V.

\[R_{CS} = \frac{0.78V}{I_{PPK}} = 2.2\Omega \approx 2.15\Omega \]

\[P_{RCS} = (I_{PRMS})^2 \times R_{CS} = 46mW \text{, nominal current sense resistor power dissipation} \]

Recalculate power budget

\[P_{BUDGET} = P_{BUDGET} - P_{RCS} \approx 0.883W \]

Select Output Diode (D_G):
Calculate diode reverse voltage (V_RDG)

\[V_{RDG} = V_{OUT} + V_{INMAX} \sqrt{2} \frac{1}{a_1} \approx 29.3V \]
Calculate peak output diode (I_{DGPK})

$$I_{DGPK} = I_{SPK} = 4.7\,A$$

For this design we selected a 3A, 40V schottky rectifier with a forward voltage drop (V_{FDG}) of 0.31V.

$$V_{FDG} = 0.31\,V$$

Estimated diode power loss (P_{DG})

$$P_{DG} = \frac{P_{OUT} \times V_{FDG}}{V_{OUT}} \approx 310\,mW$$

Recalculate power budget

$$P_{BUDGET} = P_{BUDGET} - P_{DG} \approx 573\,mW$$

Select Output Capacitors (C_{OUT}):

Select output ESR based on 90% of the allowable output ripple voltage

$$ESR_{COUT} = \frac{V_{RIPPLE} \times 0.9}{I_{SPK}} = \frac{100mV \times 0.9}{4.7A} = 19m\Omega$$

For this design the output capacitor (C_{OUT}) was selected to prevent V_{OUT} from dropping below the minimum output voltage during transients (V_{OTRM}).

$$V_{OTRM} = 4.1\,V$$

$$C_{OUT} \geq \frac{2ms \times P_{OUT}}{V_{OUT} \times 2} = 1.1\,mF$$

For this design example two 680uF capacitors were selected in parallel on the output, with an ESR of 7 mΩ each.

$$C_{OUT} = 2 \times 680uF = 1.36mF$$

$$ESR_{COUT} = \frac{7m\Omega}{2} = 3.5m\Omega$$
Estimate total output capacitor RMS current ($I_{\text{COUT,RMS}}$)

$$I_{\text{COUT,RMS}} = \sqrt{\frac{I_{\text{SPK}} \times \sqrt{D_{\text{MAG}}}}{\sqrt{3}}} - \left(\frac{P_{\text{OUT}}}{V_{\text{OUT}}}\right)^2 \approx 1.46\, \text{A}$$

Estimate total output capacitor loss (P_{COUT})

$$P_{\text{COUT}} = (I_{\text{COUT,RMS}})^2 \times ESR_{\text{COUT}} \approx 7.5\, \text{mW}$$

Recalculate power budget

$$P_{\text{BUDGET}} = P_{\text{BUDGET}} - P_{\text{COUT}} \approx 565\, \text{mW}$$

Select BJT Q_A:

For this design we had chosen 800V 1A transistor with the following characteristics:

$$V_{CE(sat)} = 0.6\, \text{V} \, , \, \text{Transistor Collector Emitter Saturation}$$

$$V_{BE(sat)} = 0.6\, \text{V} \, , \, \text{Base Emitter Saturation}$$

$$t_r = 140\, \text{ns} \, , \, \text{Estimated collector rise time}$$

Estimate transistor losses (P_{QA}):

$$V_{FLY} = V_{\text{INMIN}} \times \sqrt{2} - \frac{V_{\text{INRIPPLE}}}{2} - 2 \times V_{FDA} \approx 99.8\, \text{V} \, , \, \text{Average Minimum Input Voltage}$$

$$I_{\text{DRS(AVG)}} = \frac{D_{\text{MAX}} (I_{\text{DRS(MIN)}} + I_{\text{DRS(MAX)}})}{2} = 14\, \text{mA} \, , \, \text{Average Base Drive Current}$$

$$I_{\text{CE(AVG)}} = \frac{I_{\text{PPK}} \times D_{\text{MAX}}}{2} = 90\, \text{mA} \, , \, \text{Average Collector Emitter Current}$$

$$P_{QA} = I_{\text{DRS(AVG)}} \times V_{BE(SAT)} + I_{\text{CE(AVG)}} \times V_{CE(SAT)} + I_{\text{PPK}} \times \frac{(V_{FLY} + (V_{OUT} - V_{DG})a1)}{2} \times t_r \times f_{\text{MAX}} = 373\, \text{mW}$$

Recalculate the power budget

$$P_{\text{BUDGET}} = P_{\text{BUDGET}} - P_{QA} \approx 192\, \text{mW}$$
Setup Zener Clamp to Protect FET Q_A:

\[V_Z = 82V \], Zener Clamp Voltage (\(D_Z\))

\[V_{CE, MAX} = 800V \], FET maximum drain to source voltage

\[V_{CLAMP} = V_{CE, MAX} \times 0.9 - V_{INMAX} \sqrt{2} \approx 345.2V \], Available Clamp Voltage to Protect FET Q_A

\[R_S = \frac{V_{CLAMP} - 0.6 - V_Z}{I_{PPK}} \approx 734\Omega \]

Select a standard resistor for the design.

\[R_S = 750\Omega \]

Estimate Zener Clamp/L_{LK} power dissipation (\(P_{LK}\))

\[P_{LLK} = L_{LPK} \times (I_{PPK})^2 \times f_{MAX} = 95mW \]

Recalculate power budget

\[P_{BUDGET} = P_{BUDGET} - P_{LLK} \approx 97mW \]

Trickle Charge Resistor (R_T):

To reduce no load power losses \(R_T\) and to keep no load power to a minimum, three 1.47M\(\Omega\) are used in series for \(R_T\)

\[R_T = 1.47M\Omega \times 3 = 4.41M\Omega \]

\[P_{RT} = \left(\frac{V_{INMAX} \sqrt{2}}{R_T}\right)^2 \approx 32mW \], Total trickle charge resistor power dissipation

Recalculate power budget

\[P_{BUDGET} = P_{BUDGET} - P_{RT} \approx 65mW \]
VDD Capacitor Selection (C_{DD}):

$$V_{VDD(on)} = 21V$$, Typical VDD turn-on threshold

$$V_{VDD(off)} = 7.7V$$, Typical VDD turnoff threshold

$$C_{DD} = \frac{(I_{DRS(AVG)} + I_{RUN}) \times C_{OUT} \times V_{OUT_INIT}}{(V_{VDD(on)} - V_{VDD(off)}) \times I_{OUT}} \approx 3.3uF$$

Select standard capacitor value for the design

$$C_{DD} \approx 4.7uF$$

Note after C_{DD} has been charged up to the device turn on threshold ($V_{VDD(on)}$), the UCC28722 will initiate three small gate drive pulses (DRV) and start sensing current and voltage. (Please refer to figure 2) If a fault is detected such as an input under voltage or any other fault, the UCC28722 will terminate the gate drive pulses and discharge C_{DD} to initiate an under voltage lockout. This capacitor will be discharged with the run current of the UCC28722 (I_{RUN}) until the VDD turnoff ($V_{VDD(off)}$) threshold is reached. Note the C_{DD} discharge time (t_{CDDD}) from this forced soft start can be calculated knowing the controller run current (I_{RUN}) without out gate driver switching and the controller’s VDD turnoff threshold ($V_{VDD(off)}$) and the following equations. If no fault is detected, the UCC28722 will continue driving Q_A and controlling the input and output currents and a soft start will not be initiated.

$$t_{CDDD} = C_{DD} \frac{V_{VDD(on)} - V_{VDD(off)}}{V_{INMAX} \sqrt{2} - I_{RUN}} = 33ms$$, Discharge for soft start Reset

3 Initial DRV Pulses After $V_{VDD(on)}$

$V_{VDD(on)} = 21V$

$V_{VDD(off)} = 7.7V$

Figure 2, VDD and DRV at Startup with Fault
Select VS voltage divider (R\textsubscript{S1}, R\textsubscript{S2}):

\[I_{VSL\text{(run)}} = 225\mu A \text{ VS Line-sense run current} \]

Note R\textsubscript{S1} so the converter will go into under voltage lockout when the input is below 80\% of the minimum specified input voltage.

\[R_{S1} = \frac{\frac{a_2}{a_1} \cdot V_{INMIN} \cdot \sqrt{2} \times 0.8}{I_{VSL\text{(run)}}} \approx 93.9k\Omega \]

Select a standard resistor for the design

\[R_{S1} = 82.5k\Omega \]

Calculate R\textsubscript{S2}

\[R_{S2} = \frac{4V}{(V_{OUT} + V_{DG}) \times a_2 - 4V} \approx 23.7k\Omega \]

Select a standard resistor for the design

\[R_{S2} = 27.4k\Omega \]

Calculate VS divider power dissipation (P\textsubscript{VS})

\[P_{VS} = \left(\frac{\sqrt{D_{MAX} \cdot (V_{OUT} + V_{DG}) \cdot a_2}}{(R_{S1} + R_{S2})} \right)^2 \approx 1.2mW \]

Select auxiliary diode (D\textsubscript{E}) for this design that had a forward voltage drop (V\textsubscript{DE}) of 0.6V.

\[V_{DE} = 0.6V \]

\[V_{DD} = (V_{OUT} + V_{DG}) \times a_2 - V_{DE} \approx 17.3V , \text{ UCC28700 supply voltage at V}_{DD} \]

\[V_{RDE} = V_{DD} + V_{INMAX} \cdot \sqrt{2} \times \frac{a_2}{a_1} \approx 95V , \text{ maximum reverse voltage across V}_{DE} \]
Calculate D_E power dissipation (P_{DE})

$$P_{DE} = (I_{RUN} + I_{DRS(AVG)}) \times V_{DE} \approx 9.6\text{mW}$$

Recalculated power budget

$$P_{BUDGET} = P_{BUDGET} - P_{VS} - P_{DE} \approx 54\text{mW}$$

Preload Resistor Selection (R_Z):
To keep the output voltage from climbing at no load a pre-load resistor is required. This is generally a trial and error process. For this design the preload resistor that kept the output regulated under no load conditions was 10 kΩ.

$$R_Z = 10.0K$$

Calculate R_Z power dissipation (P_{RZ})

$$P_{RZ} = \left(\frac{V_{OUT}}{R_Z}\right) \approx 2.5\text{mW}$$

Recalculated power budget and there is 52 mW of margin left in the power budget to meet the efficiency requirements of the design. Note in production designs, more margin might be required. Also note these calculations are estimations and the final design may need to be adjusted to hit efficiency requirements and regulation requirements.

$$P_{BUDGET} = P_{BUDGET} - P_{RZ} \approx 52\text{mW}$$

Internal Blanking
The UCC28722 controller regulates the output voltage by sensing the auxiliary (Aux) winding. This removes the need for opto isolator feedback scheme reducing the cost of the design. However, this voltage control feedback scheme is susceptible to leakage spikes at the switch node that occur in most flyback converters. This signal is coupled through the turns ratio of the transformer (T1) and shows up on the Aux winding during t_{LK_RESET}, please refer to figure 3 for details.

To help insure the leakage spike on the Aux winding does not cause a control issue the UCC28720/22 blanks (t_B) the Aux signal to the controller for 600 ns to 2.2 us depending on loading. Please see the data sheet details [1]. **Note the ringing on the auxiliary winding needs to be less than 100mV peak to peak after t_B.** Snubbing circuitry on the secondary and/or auxiliary winding may be required to reduce ringing.
To ensure the leakage spike does not cause control issues it needs to be dissipated before the Aux blanking (t_B) has terminated. The tank frequency (f_{LC}) between the switch node capacitance (C_{SWN}) and the transformer leakage inductance (L_{LK}) should be greater than 1MHz.

\[
f_{LC} = \frac{1}{2\pi \sqrt{L_{LK} \times C_{SWN}}}
\]

\[
f_{LC} \geq \frac{1}{2 \times 500\text{ns}} = 1\text{MHz}
\]
Select line compensation resistor R_{LC}:
Resistor R_{LC} provides offset to the peak current comparator input (CS). R_{LC} is adjusted to terminate the gate drive signal (B) early to prevent primary current (A) from over shooting [1]. Please refer to figures 4 and 5 for details.

$$K_{LC} = 25$$, Line Compensating Ratio [1]

Calculate R_{LC} initial resistor setting based on QA_{DS} rise and fall time (t_r)

$$R_{LC} = \frac{K_{LC} \times R_{S1} \times R_{CS} \times t_r \times aI}{L_{PM}} \approx 6.3\,k\Omega$$, Starting Point for R_{LC}

In circuit adjust R_{LC} so the maximum output current is (I_OUT). For this design R_{LC} was set to 1 kΩ.

$$R_{LC} = 1k\Omega$$
Estimate no load input power (P_{NL}):

$$f_{MIN} = 650Hz$$, Minimum operating frequency

$$I_{WAIT} = 95\mu A$$, VDD input current at 1 kHz operating frequency [1]

$$P_{VDD} = I_{WAIT} \times V_{DD} + \frac{\left(I_{DRS(max)} + I_{DRS(min)}\right) \times V_{DD}}{2} \times f_{MIN} \approx 5.9mW$$, Estimated UCC28722 power dissipation

Estimate switching losses (P_{SWFM}) at high line at f_{MIN}

$$P_{SWFM} = \left(V_{ENMAX} - (V_{OUT} - V_{VDG}) \times a1\right) \times \frac{I_{PPK} \times t_a \times f_{MIN}}{3} \approx 1.6mW$$

$$P_{LLK} = \frac{L_{LPK} \times \left(I_{PPK} / 3\right)^2 \times f_{MIN}}{2} \approx 92\mu W$$, estimate of leakage power dissipation at no load

The estimated no load input power (P_{NL}) is roughly 42 mW.

$$P_{NL} = P_{VDD} + P_{SWFM} + P_{RZ} + P_{RF} + P_{LLK} \approx 42mW$$

5W EVM Schematic:

![Figure 6, UCC28720EVM-212 Schematic](image-url)
REFERENCES
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>