bq27545-G1 to bq27546-G1 Change List

ABSTRACT

This document describes the changes made from bq27545-G1 to bq27546-G1. The latest ordering information and data sheet is available on the TI Web site.

NOTE:

- bq27545-G1 ICs cannot be upgraded with bq27546-G1 firmware.
- bq27546-G1 includes a new ROM version to enable updated firmware features.
- Although the bq27545-G1 reports FW version 2.24 and the bq27546-G1 reports FW version 2.01, bq27546-G1 is from a new code branch and is therefore more recent.

1 Introduction

The bq27546-G1 firmware version 2.01 enables several feature additions and performance improvements. The following newly released orderable part numbers are shipped pre-programmed with this new version of firmware:

- bbq27546YZFR-G1
- bq27546YZFT-G1

To use the bq27546-G1, download the latest version of Battery Management Studio (bqStudio) evaluation software from ti.com.

Due to a ROM update, existing bq27545 ICs and EVMs cannot be upgraded to parity with bq27546.

NOTE: If a golden image created for any version of bq27545-G1 is loaded into a bq27546-G1 IC, the IC will become non-functional and must be replaced. The best practice is to generate a new golden image (DFI file) for bq27546-G1. If a learning cycle for an existing cell or battery has already been performed on bq27545-G1, it is acceptable to program the same chemID and then copy the learned Qmax and Ra values to a new bq27546 golden file.

2 Change Details

<table>
<thead>
<tr>
<th>Change</th>
<th>bq27545-G1</th>
<th>bq27546-G1</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM version update</td>
<td>Older ROM version</td>
<td>Newer ROM version</td>
<td>bq27545 ICs cannot be upgraded with bq27546 firmware.</td>
</tr>
<tr>
<td>Support Fast Qmax</td>
<td>Fast Qmax feature is not present.</td>
<td>Allows the use of the FastQmax algorithm feature to increase the likelihood of Qmax updates for applications where periodic relaxations may not be possible. New enable bit added to Pack Configuration C: FastQmax</td>
<td>New Feature</td>
</tr>
<tr>
<td>Support Battery Trip Point (BTP)</td>
<td>BTP is not supported.</td>
<td>Provides full BTP compliance for customers designing Win8 products. New bit added to Pack Configuration C: BTP_EN</td>
<td>New Feature</td>
</tr>
</tbody>
</table>

All trademarks are the property of their respective owners.

Copyright © 2015, Texas Instruments Incorporated
Table 1. Change Details (continued)

<table>
<thead>
<tr>
<th>Change</th>
<th>bq27545-G1</th>
<th>bq27546-G1</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support TURBO mode</td>
<td>TURBO mode is not supported.</td>
<td>Provides useful current reporting to inform the system when to throttle back consumption to avoid brownout. Enables dynamic or load scaling of system current.</td>
<td>New Feature</td>
</tr>
<tr>
<td>Add Trace/Downstream Resistance Feature</td>
<td>Feature is not supported.</td>
<td>Allows applications with non-trivial parasitic trace resistances between cell and PACK+− nodes, as well as between PACK+− and system +/− nodes. This enables the gauge to better predict when Terminate Voltage will be reached on the system side where power is used, rather than on the cell side.</td>
<td>New Feature</td>
</tr>
<tr>
<td>Filtered remaining capacity reporting options</td>
<td>Filtered RemCap and SOC must start decreasing immediately on discharge, and increase immediately on start of charge, even if over-charged (>100%) or over-discharged (below empty). In these situations, the Unfiltered values stay at 100% and 0% to reflect the true state.</td>
<td>New options are added to maintain legacy filtered behavior or else allow Filtered SOC and RemCap to hold at 100% and 0% until overcharged and over-discharged conditions pass. New bits added to Pack Config: SOCHoldOvrChg SOCHoldOvrDsg</td>
<td>Feature Change</td>
</tr>
<tr>
<td>SOC reporting improvement</td>
<td>Gauge is allowed to report 100% before charge termination detection or 0% before Terminate Voltage is reached.</td>
<td>Gauge can be configured to hold SOC at 99% until charge termination conditions are detected, and at 0% until Terminate Voltage is reached. New enable bits added to Pack Config: SOCHold99 SOCHold1</td>
<td>Feature Change</td>
</tr>
<tr>
<td>Add time-based or instant synchronization to SOC smoothing during RELAXATION</td>
<td>Filtered and Unfiltered capacity values will necessarily diverge as conditions change. They can only be synchronized at full or empty points, unless RelaxRCJumpOK is enabled and a temperature change causes a jump.</td>
<td>Option is added to allow convergence of Filtered values to match Unfiltered values either over time or instantly during relaxation. New enable bits added: Pack Configuration C [RlxSmEn] and Pack Configuration D [SMRLXSYNC].</td>
<td>New Feature</td>
</tr>
<tr>
<td>Dedicated Load Select for Fast Ra Scaling</td>
<td>Same Load Select option used for simulations both before and after Fast Ra Scaling starts.</td>
<td>Allows customization of load used for Fast Ra Scaling simulations. Helps for better convergence at end of discharge. New parameter is added: Fast Scale Load Select.</td>
<td>New Feature</td>
</tr>
<tr>
<td>Disable Thermal model at the end of discharge</td>
<td>Thermal model may overestimate heating at end of discharge and can lead to poor convergence to empty.</td>
<td>Thermal model can be disabled during Fast Ra Scaling if needed. Helps for better convergence at end of discharge. New bit added to Pack Configuration C: FConvTempEn</td>
<td>New Feature</td>
</tr>
<tr>
<td>Allow resistance updates based on IR drop</td>
<td>Resistance updates at lower rates cannot be reliable at times. They are not allowed if the current is <C/10.</td>
<td>Gives extra flexibility in allowing resistance updates at low rates. This leads to reliable resistance updates in applications with low rates provided the resistance is high enough (at low temperatures, for example).</td>
<td>New Feature</td>
</tr>
<tr>
<td>Improve simulations at Low Temperature</td>
<td>Improves convergence to 0% at low temperature.</td>
<td>Improves convergence to 0% at low temperature.</td>
<td>New Feature</td>
</tr>
<tr>
<td>T ambient (T_a) enhancement</td>
<td></td>
<td></td>
<td>New Feature</td>
</tr>
<tr>
<td>Use Ra1 instead of interpolation for DOD positions below grid1</td>
<td>Simulation accuracy at low DOD may not be accurate at times due to high resistance.</td>
<td>Improved simulation accuracy at low depth-of-discharge. Improves user experience by avoiding SOC jump at low depth-of-discharge.</td>
<td>New Feature</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio
Amplifiers
amplifier.ti.com
Data Converters
dataconverter.ti.com
DLP® Products
www.dlp.com
DSP
dsp.ti.com
Clocks and Timers
www.ti.com/clocks
Interface
interface.ti.com
Logic
logic.ti.com
Power Mgmt
power.ti.com
Microcontrollers
microcontroller.ti.com
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation
www.ti.com/automotive
Communications and Telecom
www.ti.com/communications
Computers and Peripherals
www.ti.com/computers
Consumer Electronics
www.ti.com/consumer-apps
Energy and Lighting
www.ti.com/energy
Industrial
www.ti.com/industrial
Medical
www.ti.com/medical
Security
www.ti.com/security
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Video and Imaging
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated