ABSTRACT

Power supply designers must often troubleshoot problems. The problems may include smoke upon first supplying power or the device displays no light or noise and does not start up at all. The fundamentals of debugging should be to make sure the components are assembled correctly according to the schematic with no incorrect PCB connections. This document focuses on the design issues and assumes the board has been checked and that failed components have been repaired. This application note can be used for TI’s primary-side regulated (PSR) controllers and switchers, such as the UCC2870X, UCC2871X, UCC2872X, UCC28730, and UCC2891X.

Contents

1 Background ... 2

2 Issue 1: Power Converter Cannot Startup or Shuts Down Unexpectedly .. 3

2.1 Cause 1: \(V_{DD} \) UVLO .. 3

2.2 Cause 2: \(V_{DD} \) Clamp Current Exceeding Rating (Only for UCC2891X) ... 3

2.3 Cause 3: \(V_{IN} \) UVLO .. 3

2.4 Improper BJT Selection .. 4

2.5 Cause 4: On-time Detection ... 5

2.6 Cause 5: CS Short Circuit (1.5-V) Protection .. 6

2.7 Cause 6: AUX Winding Detection (OVP) .. 7

3 Issue 2: Output Voltage Ripple and Noise is Quite High at Certain Load .. 8

3.1 Is That a Line Frequency Ripple? ... 8

3.2 Is that a low frequency oscillation (loop unstable for TI PSR)? ... 8

4 Issue 3: Transient Response Worse ... 9

4.1 PSR Limitation .. 9

5 Issue 4: Constant Current Mode ... 9

5.1 CC Value Varies With High or Low Line Input ... 9

6 Issue 5: Missing Valley Switching .. 9

6.1 Cause 1 - LC Resonant Period Too Long .. 9

6.2 Cause 2 - Very Quick Resonant Decay With TVS Snubber .. 10

7 Issue 6: Audible Noise ... 10

8 Device Nomenclature .. 11

9 Other Support Resources .. 12

10 References .. 12

List of Figures

1 Simplified Typical TI PSR Flyback Application .. 2

2 \(V_{DD} \) UVLO Protection .. 3

3 Waveforms Needed to Distinguish Input UVLO Issue ... 4

4 UVLO Protection Caused by Improper BJT Selection ... 5

5 Startup Issue Caused by Long \(t_{ON} \) on a UCC28704 Board ... 5

6 OCP Caused by the Noise .. 6

7 OCP Protection Caused by Transformer Saturation .. 7

8 B-H Temperature Characteristics of the TDK PC95 ... 7

9 Line Frequency Ripple in Output Voltage .. 8
1 Background

Table 1 is a comparison table for TI’s PSR controllers and switchers. Minor differences are noted even though the control laws and working principles may be similar.

<table>
<thead>
<tr>
<th>TI PSR Part</th>
<th>HV Start</th>
<th>Output Drive for</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCC2870X</td>
<td>No</td>
<td>MOSFET</td>
</tr>
<tr>
<td>UCC2871X</td>
<td>Yes</td>
<td>MOSFET</td>
</tr>
<tr>
<td>UCC28720</td>
<td>Yes</td>
<td>BJT</td>
</tr>
<tr>
<td>UCC28722</td>
<td>No</td>
<td>BJT</td>
</tr>
<tr>
<td>UCC28730</td>
<td>Yes</td>
<td>MOSFET</td>
</tr>
<tr>
<td>UCC2891X</td>
<td>Yes</td>
<td>Integrated MOSFET</td>
</tr>
</tbody>
</table>

Figure 1 is a simplified basic reference circuit used for description purposes in this application note. Note the part used in Figure 1 is the UCC28700. If using other parts, there are minor differences in the circuit that will not affect troubleshooting. Also note that primary and secondary snubbers are not shown.

Figure 1. Simplified Typical TI PSR Flyback Application
2 Issue 1: Power Converter Cannot Startup or Shuts Down Unexpectedly

2.1 Cause 1: V_{DD} UVLO

Phenomenon: Before V_{DD} goes down to $V_{DD\text{off}}$, there are switching pulses with which the frequency is higher than minimum frequency, $F_{sw\text{(min)}}$, as shown in Figure 2.

Potential Solutions:
- Increasing the auxiliary winding turns will elevate the V_{DD} level.
- Increase V_{DD} capacitance. This helps the V_{DD} sustain time also helping with startup.
- Decrease output capacitance and increase the constant current point. See the “primary side regulation” on the datasheet for the constant current. A simple way to increase the constant current point is to decrease the R_{CS} resistor. These methods increase the rising time of V_{out} to help startup.
- Decrease the resistor in-series with an auxiliary diode, if any. It will elevate the V_{DD} level by collecting more leakage energy of the transformer with some load.
- “Full Load, CC Mode, load-on point = 0 V” is the serious configuration of E-load for startup. Sometimes changes on the E-load configuration, such as setting half load or CR Mode or setting load-on point at higher value, are acceptable within the system requirements.

2.2 Cause 2: V_{DD} Clamp Current Exceeding Rating (Only for UCC2891X)

Phenomenon: V_{DD} reaches $V_{DD\text{CLP}}$ (minimum 26 V), and the clamp flowing current exceeds 6 mA.

Potential Solutions: Make sure V_{DD} stays lower than $V_{DD\text{CLP}}$ at all conditions by setting the Na/Ns properly and adjusting the resistor in-series with V_{DD} diode.

2.3 Cause 3: V_{IN} UVLO

TI PSR parts have AC-line input undervoltage protection functions by detecting current information at the VS pin during the MOSFET on-time. While the VS pin is clamped close to GND during the MOSFET on-time, the current through RS1 is monitored to determine a sample of the bulk capacitor voltage. To make sure the converter works properly, the VS dividers should be designed carefully according to the datasheet.
However, if you believe the calculation is right, but there is a shutdown or startup issue, capture the last three cycles of V_{BLK}, V_{AUX}, and V_{DRV} as is suggested in Figure 3. Determine the root cause by checking the following:

1. Is the voltage of V_{BLK} too low? — A bulk capacitor value that is too small would make the ripple on V_{BLK} too much, especially at low-line input and full load. A rough suggestion for bulk capacitor selection is about 2 μF / W. For a 10-W design, 22-μF capacitance (22 μF is standard value) is suggested.

2. Is the V_{AUX} waveform flat and the V_{AUX} approach to $V_{BLK} \times Na / Np$ during MOSFET on-time? — If not, there is something wrong; check the transformer turns ratio and the voltage on the primary windings during Q1 on-time. A common issue is **Improper BJT Selection**.

3. Is the current from the VS pin at startup (for the issues where there are only three cycles of pulses) $V_{AUX} / RS1$ larger than $I_{VSL(run)}$? — Make sure the current is larger than $I_{VSL(run)}$, or else go back check the related parameters.

4. Is the current from the VS pin at the last switching cycle (for the issues where there are many cycles) $V_{AUX} / RS1$ lower than $I_{VSL(stop)}$? — If yes, it will cause the converter to shut down.

Figure 3. Waveforms Needed to Distinguish Input UVLO Issue

2.4 Improper BJT Selection

For UCC28722 and UCC28720 devices, improper selection for BJT could cause the input UVLO protection. The BJT may not be fully switched on due to the low current gain. V_{AUX} during MOSFET on-time is not flat and does not match $V_{BLK} \times Na / Np$ near the end of MOSFET on-time. Figure 4 shows a typical UVLO protection caused by improper BJT selection.

An important parameter for a BJT is h_{FE}, DC current gain. It varies with I_{B}, V_{CE} and temperature and can be quite low. For the UCC2872X application, base current I_{B} is decided by the controller’s driving current I_{DRS} (19 mA to 37 mA).

So the h_{FE} current gain of BJT should be high enough to make the BJT operate with lower on-state V_{CE}.

2.5 Cause 4: On-time Detection

2.5.1 On-Time is Too Long at First Startup Cycle

Phenomenon: TI PSR controllers and switchers check the MOSFET on-time by detecting the voltage on the CS pin on the very first cycle after \(V_{DD} \) UVLO on. If the voltage on the CS pin does not reach \(I_{PP(min)} \) in the desired time, the IC will confirm the fault and discharge \(V_{DD} \) to \(V_{DD(off)} \) where \(I_{PP(min)} = \frac{V_{CST(min)}}{R_{CS}} \). For UCC28704 and UCC28730, this desired time is typical 4 µs. For UCC28700/1/2/3, UCC28710/1/2/3, UCC28720/2, UCC28740 the desired time for \(t_{ON} \) fault is \(\frac{1}{F_{SW(max)}} \). As for the first cycle, \(t_{ON} = \frac{L_{PRI} \times I_{PRI}}{V_{BLK}} \), too high inductance or very low input voltage can cause this startup issue. Figure 5 shows the \(t_{ON} \) fault of the UCC28704 circuit.

Potential Solutions: To verify the issue, increasing input voltage, decreasing \(L_{PRI} \) or increasing \(R_{CS} \) can be used. However, the circuit designer should check the power system design completely to find out why the \(t_{ON} \) time is so large.

![Figure 4. UVLO Protection Caused by Improper BJT Selection](image)

![Figure 5. Startup Issue Caused by Long \(t_{ON} \) on a UCC28704 Board](image)

2.5.2 Too Long On-Time Causes Shutdown

Phenomenon: This is only suited for the UCC2891X. The IC will stop DRV output and start the \(V_{DD} \) UVLO cycle when it detects three consecutive on-times larger than \(t_{ONMAX(max)} \) at high load and \(t_{ONMAX(min)} \) at light load.

Potential Solutions: To verify the issue, decrease \(L_{PRI} \) or increase \(R_{IPK} \). However, the circuit designer should check the power system design completely to find out why the \(t_{ON} \) time is so large.
2.6 **Cause 5: CS Short Circuit (1.5-V) Protection**

The converter will stop the switching cycle and start a V_{dd} reset cycle when the IC detects a voltage on the CS pin higher than 1.5 V for three consecutive cycles.

2.6.1 **CS Noise Caused by Layout**

Phenomenon: The typical noise caused by the suddenly raised dv/dt of the Vds of primary MOSFET / BJT is illustrated in Figure 5. The voltage peak on the CS pin after MOSFET / BJT turn off exceeded the overcurrent threshold V_{OCP}, for UCC28710 its typical value is 1.5 V. The noise can be serious if there is poor layout and the R_{LC} is too high.

Potential Solutions: Improve the CS circuit layout and MOSFET to decrease the noise.

The situation improves with a smaller R_{LC}. However, changing the R_{LC} resistor will also impact the constant current regulation. Make sure R_{LC} is close to the controller package.

2.6.2 **Transformer Saturation**

Phenomenon: The typical saturation for a transformer is illustrated in Figure 6. The current through R_{CS} increases rapidly when the transformer becomes saturated.

Potential Solutions: Check the transformer design to make sure no saturation occurs. The equation to check B_{MAX} is:

$$B_{MAX} = \frac{I_{PRI} \times L_{PRI}}{N_p \times A_e}$$

where

- $I_{PRI} = \frac{V_{CST(max)}}{R_{CS}}$ for UCC2870X, UCC2871X and UCC2872X
- $I_{PK} = \frac{V_{CCR}}{R_{NPK}}$ for UCC2891X
- N_p is the primary winding turns of the transformer
- L_{PRI} is the primary inductance
- A_e is the cross-sectional area of the core

Equation (1)

B_{MAX} should always be lower than B_{SAT} which is the core saturation flux density and decided by the core material. The curve or value of B_{SAT} is found in the ferrite core book as shown in Figure 7. The temperature characteristic of B_{SAT} should be considered.
2.7 **Cause 6: AUX Winding Detection (OVP)**

The output overvoltage function is determined by the voltage feedback on the VS pin. The device stops switching and starts to discharge the V_{DD} capacitor to the $V_{VDD(0ff)}$ threshold when it detects an overvoltage.

2.7.1 Output Voltage Trigger OVP at Zero Load

Phenomenon: When probing on the output voltage, the output voltage exceeds the regulation level and the voltage reflected to the VS pin exceeds the overvoltage threshold V_{OVP}.

Potential Solutions:
- Decrease the capacitance of the drain node, which mainly includes the C_{OSS} of the MOSFET and input capacitance of the transformer;
- To decrease the preload resistor value
- To check if the turn-off of the MOSFET is too slow which may cause too large of a series resistor in the gate

2.7.2 The Shape on the VS Pin Affects the Detection

The PSR controller does not sense the output directly like a traditional optocoupler feedback. It is more sensitive by its working scheme of detecting the auxiliary winding voltage. The shape of the voltage on the VS pin is very important to avoid mis-detection and OVP. Because probing on the VS pin could also affect the detection, estimate the waveform of the VS pin by probing the auxiliary winding.

See the respective datasheet for the needed shapes.
However, snubber adjusting especially on the damping resistor can affect the waveforms. A leakage inductance of the transformer that is too high would make the detection less accurate. The layout of the VS relative circuit should also be done correctly. The trace between the VS dividers and the VS pin should be as short as possible to reduce EMI coupling.

3 Issue 2: Output Voltage Ripple and Noise is Quite High at Certain Load

First of all, check if the converter is in \(V_{DD} \) UVLO reset and restart sequence. If the \(V_{DD} \) crosses between \(V_{DD(on)} \) and \(V_{DD(off)} \), which will cause ripple issues, the protection is triggered. From issue 1, you could get clues to find out and solve the root cause. If the \(V_{DD} \) does not hiccup between \(V_{DD(on)} \) and \(V_{DD(off)} \) thresholds, then proceed to debug with one of the following tips:

3.1 Is That a Line Frequency Ripple?

Figure 9 is a typical waveform of high ripple with line frequency. When \(V_{BLK} \) is at a lower point, the converter cannot provide enough power to the output, so the “Dip” ripple may be seen. To solve this problem, increasing the bulk cap or decreasing the \(Np/Ns \) ratio can be used. However, as changing the \(Np/Ns \) also affects other performance, checking the calculation according to the datasheet is the root way to solve this issue.

3.2 Is that a low frequency oscillation (loop unstable for TI PSR)?

The closed-loop of PSR is not as apparent as it is of opto-feedback. So if there is unexpected ripple with several kHz frequency (not the line frequency) as shown in Figure 10, investigate the following points:

- Check if there is a missing valley switching, as mentioned in Issue 5: Missing Valley Switching. The abnormal valley switching could cause some oscillation on the ripple.
- The loop instability could cause high ripple. As it is difficult to measure the closed loop response in PSR parts, the way to mitigate it is to increase the output capacitor and increase the working frequency at full load.
- Noise on the VS and CS pin can also have an effect on the instability.
Issue 3: Transient Response Worse

4.1 PSR Limitation

The PSR has a limitation of the transient response, especially when the load is switched from light load to half load or full load. This is because the switching frequency is very low at light load.

For special cases which need better transient response when the load switches from zero load to a certain load, increasing the working frequency of zero load and increasing the output capacitor can work. But, increasing the working frequency of a zero load also means a higher preload requirement which deteriorates standby power.

Another choice is using the UCC28730+UCC24650 chipset solution, which brings both very low standby power and a good transient response performance.

5 Issue 4: Constant Current Mode

5.1 CC Value Varies With High or Low Line Input

Phenomenon: The CC greatly varies with different line input voltage.

Potential Solutions: Adjusting the R_{LC} resistor should mitigate the difference. See the respective datasheet for the function of the R_{LC} resistor.

6 Issue 5: Missing Valley Switching

The PSR controllers and switchers from TI operate in discontinuous conduction mode with valley-switching to minimize switching losses. However, improper design could make the valley switching disappear, which could cause increased switching loss and higher ripple or higher noise.

6.1 Cause 1 - LC Resonant Period Too Long

Phenomenon: The LC resonant tank exceeded the t_{ZTO}. t_{ZTO} is defined as zero crossing timeout delay and is specified in datasheet. For UCC2870X, UCC2871X and UCC2891X, the minimum value of t_{ZTO} is 1.8 µs, for the UCC28730 it is 1.6 µs. As the resonant frequency is decided by the primary inductance of the transformer and equivalent capacitor on the drain node $C_{SW} = C_{OSS} + C_w$ (where C_{OSS} is the output capacitance of primary MOSFET and C_w is the transformer capacitance), the resonant period $= 2\pi \sqrt{L_{PRI} \times C_{SW}}$.

Potential Solutions: Decrease the primary inductance L_{PRI} or capacitance on the drain node to solve this issue.
6.2 Cause 2 - Very Quick Resonant Decay With TVS Snubber

Phenomenon: When very low standby power is required and switching frequency is very low, a TVS snubber must be used. With a TVS snubber, improper selection of slow clamp diode will cause a very quick decaying as shown in Figure 12. For a detailed explanation of this issue, see *Choosing Standard Recovery Diode or Ultra-Fast Diode in Snubber (SNVA744).*

Potential Solutions: An R2CD snubber is suggested to replace the TVS snubber for those which do not need very low standby power applications; If a TVS snubber is a must, using ultra-fast diode in a snubber circuit or paralleling small capacitor on TVS.

7 Issue 6: Audible Noise

The audible noise of flyback is usually caused by ceramic capacitors or the ferrite transformer because of mechanical vibration.

If replacing the ceramic capacitors, which have high dv/dt swings (such as snubber cap), with a metal-film capacitor and dip-varnishing the transformer does not work, an improper design must be considered as the problem. Engineers should check the output stability (Issue 2: Output Voltage Ripple and Noise is Quite High at Certain Load).

Another way to mitigate the audible noise is to make the converter work in the highest frequency allowed by the part’s datasheet.

Figure 11. Long LC Resonant Period Causes Missing Valley Switching

Figure 12. Very Quick Resonant Decay Caused by Improper Snubber Design
Device Nomenclature

Device Terms

- \(V_{\text{VDD(off)}} \) UVLO turn-off voltage (see the electrical characteristics table of the respective datasheet)
- \(V_{\text{VDD(on)}} \) UVLO turn-on voltage (see the electrical characteristics table of the respective datasheet)
- \(V_{\text{DD_{CLP}}} \) \(V_{\text{DD}} \) voltage clamp (see the electrical characteristics table of the UCC28910, UCC28911 datasheet (SLUS769))
- \(V_{\text{CST(min)}} \) CS pin minimum current-sense threshold (see the electrical characteristics table of the respective datasheet)
- \(V_{\text{CST(max)}} \) CS pin maximum current-sense threshold (see the electrical characteristics table of the respective datasheet)
- \(V_{\text{OCP}} \) Overcurrent threshold (see the electrical characteristics table of the respective datasheet)
- \(V_{\text{CCR}} \) Constant-current regulating voltage (see the electrical characteristics table of the respective datasheet)
- \(V_{\text{OVP}} \) Overvoltage threshold (see the electrical characteristics table of the respective datasheet)
- \(F_{\text{SW(min)}} \) Minimum switching frequency (see the electrical characteristics table of the respective datasheet)
- \(F_{\text{SW(max)}} \) Maximum switching frequency (see the electrical characteristics table of the respective datasheet)
- \(I_{\text{VSL(run)}} \) VS line-sense run current (see the electrical characteristics table of the respective datasheet)
- \(I_{\text{VSL(stop)}} \) VS line-sense stop current (see the electrical characteristics table of the respective datasheet)
- \(I_{\text{DRS}} \) DRV source current (see the electrical characteristics table of the respective datasheet)
- \(t_{\text{ONMAX(max)}} \) Maximum FET on time at high load (see the electrical characteristics table of the UCC28910, UCC28911 datasheet (SLUS769))
- \(t_{\text{ONMAX(min)}} \) Maximum FET on time at low load (see the electrical characteristics table of the UCC28910, UCC28911 datasheet (SLUS769))
- \(t_{\text{ZTO}} \) Zero-crossing timeout delay (see the electrical characteristics table of the UCC28910, UCC28911 datasheet (SLUS769))

BJT Terms

- \(V_{\text{CE}} \) Collector-emitter voltage
- \(h_{\text{FE}} \) DC current gain
- \(I_{\text{B}} \) Base current

Transformer Terms

- \(\frac{N_{\text{a}}}{N_{\text{s}}} \) Auxiliary-to-secondary turns ratio
- \(\frac{N_{\text{a}}}{N_{\text{p}}} \) Auxiliary-to-primary turns ratio
- \(\frac{N_{\text{p}}}{N_{\text{s}}} \) Primary-to-secondary turns ratio
- \(L_{\text{PRI}} \) Primary inductance
- \(B_{\text{SAT}} \) Saturation flux density
9 Other Support Resources

More help is available from TI's E2D forum:
https://e2e.ti.com/support/power_management/isolated_controllers/

10 References

2. UCC28910, UCC28911 datasheet (SLUS769)
4. UCC2870x datasheet (SLUSB41)

Other Terms

- R_{IPK}: UCC28910, UCC28911 primary current programming resistance
- R_{LC}: Line compensation resistor
- R_{S1}: High-side VS pin resistance
- R_{CS}: Primary current programming resistance
- C_{OSS}: Output capacitance of MOSFET
- C_w: Total capacitance on the switching node
- T_{ON}: On-time of MOSFET / BJT
- I_{PRI}: Peak primary current
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated