ABSTRACT

Transient response is a key performance metric in power converter design which describes how a converter responds to a sudden change in load current. This metric is important to satisfy voltage regulation requirements for dynamic loading conditions and typically requires bulk output capacitance to limit output voltage deviation. Transient response is dependent on the loop response of a converter where the bandwidth and phase margin impacts how quickly the converter responds to a transient event as well as the settling time behavior of the output voltage. The traditional frequency control method used in LLC converter is difficult to compensate and offers limited bandwidth. An innovative control method, hybrid hysteretic control (HHC), offers superior transient performance by simplifying the LLC power stage into a single pole system which is easier to compensate and achieves a higher bandwidth. This control strategy offers system benefits by minimizing the amount of necessary bulk output capacitance needed to meet a given voltage regulation requirement, allowing for reduced BOM count and smaller solution size.

Contents

1. Introduction ... 2
2. Importance of Transient Response 2
3. Direct Frequency Control vs Hybrid Hysteretic Control 3
4. Transient Response Comparison 5
5. References ... 6

List of Figures

1. Transient Response Example ... 2
2. DFC Block Diagram .. 3
3. HHC Block Diagram ... 4
4. HHC Gate Control Principle ... 4
5. DFC Loop Response .. 5
6. DFC Transient Response ... 5
7. HHC Loop Response ... 6
8. HHC Transient Response ... 6

Trademarks

All trademarks are the property of their respective owners.
1 Introduction

Transient response is a performance metric in power design which characterizes how a power supply will respond to a rapid change in output load current. Ideally, the output of a power converter has little to no change during a load step. In practice however, some variation in the output voltage is encountered. A number of important factors must be considered when analyzing the transient response of a power converter such as the maximum deviation of the output voltage, the amount of time it takes the output voltage to return to its regulated set point, and the settling behavior of the output voltage. Figure 1 shows a transient response example.

![Figure 1. Transient Response Example](image)

As shown in Figure 1, when a sudden increase in load current occurs, the output voltage droops because the converter control loop is unable to respond to the increased load demand instantaneously. As a result, the output capacitance supplies the extra charge to the load and the output voltage decreases. The control loop eventually responds to this behavior and brings the output voltage back to its regulated set point. A similar behavior is observed when a sharp decrease occurs in load current. As the converter control loop is unable to respond to the decreased load instantaneously, excess charge accumulates on the output capacitance and the output voltage increases. The time it takes for the output voltage to return to its regulated set point is known as the settling time. In addition, returning the output voltage to regulation in a smooth manner with minimal ringing is desirable.

2 Importance of Transient Response

Good transient response is a key component of power design and will impact design choices in a number of ways. Designing the power converter to maintain the output voltage within the required regulation range when subjected to the expected worst case transient load condition is important. Severe output voltage deviation can cause subsequent equipment malfunction or even shut down.

Transient response is directly correlated to the loop response of a power converter. The bandwidth of the control loop determines how quickly the converter responds to a transient event. Higher bandwidth results in a faster response time. In addition, the settling time behavior is impacted by the control-loop phase margin. Insufficient phase margin results in an underdamped response and ringing will occur in the output voltage. A minimum of 45° of phase margin is strongly recommended to minimize the possibility of unstable operation because of a transient condition. Bulk output capacitance is also important to limit deviation in the output voltage. More output capacitance can help reduce the output voltage deviation, however, limiting the amount of bulk capacitance required to minimize cost and solution size is desirable.
3 Direct Frequency Control vs Hybrid Hysteretic Control

The conventional control method for LLC resonant converters is direct frequency control (DFC) where the switching frequency is determined by the voltage loop output directly. Figure 2 shows a simplified block diagram of DFC.

With DFC, feedback from the compensation block is used to determine an appropriate frequency of the gate drive signals. Adjustment of the switching frequency modifies the gain of the modulator block with the goal being to adjust the gain to achieve the desired output voltage. This method has a proven history but can be difficult to compensate because of complexity of the modulator transfer function and its dependency on the LLC operating point. Optimal compensation can require complex computational modeling and iterative experimentation.

An innovative control method known as hybrid hysteretic control (HHC) is implemented in UCC25630x. HHC uses a combination of frequency control and charge control. Figure 3 shows a simplified block diagram of HHC. The resonant capacitor voltage is sampled through a capacitive divider formed by C1 and C2. This sampled resonant capacitor voltage, \(V_{CR} \), is connected to two current sources which are controlled by the gate drive signals. By sourcing or sinking current at the \(V_{CR} \) node, a triangular compensation ramp is added to the sampled resonant capacitor voltage.
Switching logic is derived from V_{CR} and loop compensator output, V_{COMP}. The common mode voltage on the V_{CR} pin is V_{CM}. The V_{CM} voltage and the amplitude of the V_{COMP} output are used to generate two logic thresholds, V_{THH} and V_{THL}. Use Equation 1 to calculate V_{THH} and Equation 2 to calculate V_{THL}.

\[
V_{THH} = V_{CM} + \frac{V_{COMP}}{2}
\]

\[
V_{THL} = V_{CM} - \frac{V_{COMP}}{2}
\]

The V_{CR} pin voltage is compared to these logic thresholds. When the V_{CR} voltage is greater than the V_{THH} threshold, the high-side switch is turned off. When the V_{CR} voltage is less than the V_{THL} threshold, the low-side switch is turned off. The HO and LO turn-on edges are controlled by the adaptive dead-time circuit.
Comparing HHC with traditional frequency control, this control method simplifies the power stage into a first-order system which not only greatly simplifies compensation, but also makes high bandwidth achievable. In addition, the control effort is directly related to input current charged to the resonant tank, it has inherent input feedforward, resulting in excellent input line transient response.

4 Transient Response Comparison

Figure 5 shows the loop response of a LLC converter using DFC. The bandwidth of this converter is 1.75 kHz with a phase margin of 60°.

![Figure 5. DFC Loop Response](image)

While this converter has good phase margin, it has poor bandwidth, indicating the LLC requires a significant amount time to react to a transient event. Figure 6 shows the transient response for this converter where the output current is stepped from no load to full load. As expected, a substantial dip in the output voltage occurs during the transient event. The worst-case output-voltage deviation is more than 20% and requires more than 2 ms for the converter to bring the output voltage back within regulation.

![Figure 6. DFC Transient Response](image)

For comparison, Figure 7 shows the loop response of an LLC converter using HHC. A bandwidth of 6 kHz and phase margin of 50° is achieved.
The transient response is shown in Figure 8 where the output current is stepped from no load to full load. The greater bandwidth allows the converter to respond significantly faster, limiting the maximum deviation in the output voltage to 1.25%. The output voltage is brought back to regulation within 200 µs.

The improved transient performance of hybrid hysteretic control enables (HHC) further optimization of LLC design. When the LLC uses HHC, it require less output capacitance to meet a given requirement for output voltage regulation. As such, HHC enables reduction in bill of materials (BOM) count and smaller solution size for applications requiring LLC topology.

5 References
For additional reference, refer to:
• Feedback Loop Design of an LLC Resonant Power Converter application report
• UCC256301 Enhanced LLC Resonant Controller with High Voltage Gate Driver data sheet
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated