Additional Negative Output With TPS601xx

Thomas Schäffner
Analog & Mixed Signal Solutions

ABSTRACT

In addition to a main positive supply voltage, some applications also require a negative voltage at low current. The power-supply circuit should easily be able to provide the application with this additional supply voltage. This note discusses a simple way to derive a negative voltage from a charge pump dc/dc converter. An easy solution to stabilize the negative voltage is to use a shunt regulator. The regulated negative output can be adjusted from \(-V_{\text{ref}}\) to \(-3\) V, where \(V_{\text{ref}}\) is typically 1.24 V.

The application describes a solution for biasing a LC-Display with \(-2\) V at 1 mA.

Design Problem

With inductive dc/dc converters, it is easy to generate several voltages by additional windings on the inductor. Charge pumps do not allow this direct solution. The solution proposed is based on being able to use the voltage ripple at the flying capacitor to generate a negative voltage at low current. Because the voltage ripple is very low and is also highly sensitive to the input voltage and the output current of the main output, the voltage ripple must first be multiplied, then stabilized. This is done with a cascade, followed by a TLV431 shunt regulator. One advantage of this solution is that the negative voltage can be adjusted easily to another voltage level. This circuit has been tested with all TPS601xx devices. The TPS6010x and TPS6011x-devices must run in skip mode to ensure a voltage ripple at \(C_{\text{fly}}\) that is high enough; hence, SKIP is connected to \(V_{\text{in}}\).

Solution

Figure 1 shows the application, which consists of the TPS601xx charge pump, a cascade of Schottky diodes, and the 3-terminal adjustable shunt regulator TLV431. In order to minimize losses, Schottky diodes are used for the cascade which inverts the input voltage of the cascade and doubles it. To increase the amplitude of the input to the cascade, small 1-\(\Omega\) resistors are added in series with the flying capacitors, \(C_{\text{fly1}}\), and \(C_{\text{fly2}}\).
Figure 1. Schematic of Application Circuit

V_O is the negative output voltage at the cascade. The negative output voltage, V_O, is determined by the resistor network R_1 / R_2 as follows:

$$V_O = - \left(1 + \frac{R_1}{R_2}\right) \cdot V_{\text{ref}} - R_1 \cdot I_{l(\text{ref})}$$

where V_{ref} is typically 1.24 V. Here, $I_{l(\text{ref})}$ is the reference input current, which is typically about 0.15 µA.

The resistor, R, should provide a cathode current of $|I_{ca,\text{min}}| \geq 0.08$ mA to the TLV431 at the minimum voltage, V_I.

Application Hints:
- For best performance, connect the input of the cascade with C1- (PIN 8) when using the TPS60140.
- Use low-voltage Schottky diodes for the cascade. Examples are BAT54S (double diode), LL103A, and MBRM120LT3 (for highest performance).

- The value of R in series with \(C_{\text{fly1}} \) and \(C_{\text{fly2}} \) must be the smallest resistance that is just sufficient to provide all three of
 - Maximum input voltage of the charge pump
 - Minimum output current at the main output
 - Maximum output current at the negative output

The procedure for determining the right resistance is as follows: (i) To the input, connect the lowest input voltage to be used in the application, (ii) Load the main output (OUT) with the minimum current that can occur in the application, (iii) Load the negative output with the maximum current that can occur at the negative output in the application, (iv) Keep increasing the value of the resistors in series with \(C_{\text{fly}} \) until the negative voltage and current can be provided by the negative output. The lowest resistance possible should be used, because increasing the value of these resistors decreases the main output current.

- In some applications using the TPS6012x, TPS6013x and TPS6014x, the resistors in series with the flying capacitors may (both) be unnecessary.

- At low input voltages, the resistor in series with \(C_{\text{fly}} \) limits the maximum current at the main output of the charge pump, but it increases the performance of the negative voltage. Use the lowest value sufficient for the application.

Because the charge pump generates a regulated output voltage, the resistors in series with the flying capacitors do not decrease the efficiency of the inverter over a wide range of input voltage and output current.

Free samples can be ordered from http://www.ti.com. Type the complete device name in the quick-search box and select check stock or order under Availability/Samples. For more detailed information about the device, see the TPS6010x data sheet [SLVS213B], or TPS6010x/TPS6011x Charge Pump [SLVA070].

References

1. TPS60100 Regulated 3.3-V 200-mA Low-Noise Charge Pump DC/DC Converter, Data Sheet, Texas Instruments Literature Number SLVS213B.

2. TPS6010x/TPS6011x Charge Pump, Application Report, Texas Instruments Literature Number SLVA070.
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated