ABSTRACT

Operation of the UCD9081 is configured by programmable (flash) memory within the device. The memory can be written to and read from using a command protocol over a standard I2C™ bus interface. This document provides the hardware and software details necessary to program the UCD9081 with the configuration data.

Contents

1 Introduction ... 2
2 Hardware ... 2
 2.1 Package: RHB (S-PQFP-N32), 32-Pin Plastic Quad Flatpack 2
 2.2 Hardware/Pinout: .. 2
 2.3 Detailed Pin Descriptions .. 3
3 Software ... 3
 3.1 Data File Format .. 3
 3.2 I2C Transactions .. 3
 3.3 Device Version .. 4
 3.4 Checksum ... 4
 3.5 Sample Configuration Data File ... 4
 3.6 I2C Write and Read Transaction Formats 5
 3.7 Pseudo I2C Write and Read Transactions 5
4 User Configuration .. 17
 4.1 Configuration Parameter Memory Map 17
 4.2 Configuration Parameter Detail .. 18
5 Additional Considerations ... 28
 5.1 Embedded Application .. 28
 5.2 Timing ... 28
6 References .. 32

List of Figures

1 Write ... 5
2 Read ... 5
3 Power-Up Delay, no Parameter Change 28
4 Power-Up Delay, With Parameter Change 29
5 START Bit Requirement 30
6 Eighth Bit of Write Command Requirements 30
7 Read/Write Bit Requirements .. 31
8 Acknowledge Bit Requirements .. 31
9 Byte Timeout Requirements ... 32
1 Introduction

The UCD9081 can be customized to each unique user application by creating the programming or configuration parameters file. The most efficient and preferred method for creating the configuration parameters file (either in ".par or ".hex format) is to use the UCD9081 evaluation module (EVM) graphical user interface (GUI) which is available on the TI Web site. This document provides supplemental information to that contained within the UCD9081 data sheet (SLVS813).

2 Hardware

2.1 Package: RHB (S-PQFP-N32), 32-Pin Plastic Quad Flatpack

2.2 Hardware/Pinout:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Connection/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vss</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>XIN</td>
<td>Vcc</td>
</tr>
<tr>
<td>4, 17, 20, 31</td>
<td>NC (1)</td>
<td>Vss</td>
</tr>
<tr>
<td>5</td>
<td>RST</td>
<td>Device reset</td>
</tr>
<tr>
<td>6</td>
<td>MON1</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>MON2</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>MON3</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>MON6</td>
<td>NC</td>
</tr>
<tr>
<td>10</td>
<td>EN4</td>
<td>NC</td>
</tr>
<tr>
<td>11</td>
<td>EN5</td>
<td>NC</td>
</tr>
<tr>
<td>12</td>
<td>EN6</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>EN7</td>
<td>NC</td>
</tr>
<tr>
<td>14</td>
<td>MON7</td>
<td>NC</td>
</tr>
<tr>
<td>15</td>
<td>MON8</td>
<td>NC</td>
</tr>
<tr>
<td>16</td>
<td>MON4</td>
<td>NC</td>
</tr>
<tr>
<td>17</td>
<td>MON5</td>
<td>NC</td>
</tr>
<tr>
<td>21</td>
<td>SDA</td>
<td>I2C data</td>
</tr>
<tr>
<td>22</td>
<td>SCL</td>
<td>I2C clock</td>
</tr>
<tr>
<td>23</td>
<td>EN1</td>
<td>NC</td>
</tr>
<tr>
<td>24</td>
<td>EN2</td>
<td>NC</td>
</tr>
<tr>
<td>25</td>
<td>EN8/ADDR1/GPO1</td>
<td>Vss</td>
</tr>
<tr>
<td>26</td>
<td>ADDR2/GPO2</td>
<td>Vss</td>
</tr>
<tr>
<td>27</td>
<td>ADDR3/GPO3</td>
<td>Vss</td>
</tr>
<tr>
<td>28</td>
<td>ADDR4/GPO4</td>
<td>Vss</td>
</tr>
<tr>
<td>29</td>
<td>TEST</td>
<td>Vss</td>
</tr>
<tr>
<td>30</td>
<td>Vcc</td>
<td>3.3 V</td>
</tr>
<tr>
<td>32</td>
<td>ROSC</td>
<td>100K to Vcc, or 1.75 V</td>
</tr>
</tbody>
</table>

(1) No Connect
2.3 Detailed Pin Descriptions

2.3.1 RST
Device reset input: Apply an active-low level with a minimum pulse width of 2 µs to reset the UCD9081. A delay follows the negation of RST before the UCD9081 can process commands on the I2C™ bus. See Section 5.2.1 for more detail.

2.3.2 SDA
I2C Serial Data Input/Output: SDA complies with the Philips specification for an I2C Slave device. An external pullup resistor is required on this pin.

2.3.3 SCL
I2C Serial Clock Input/Output: SCL complies with the Philips specification for an I2C Slave device. An external pullup resistor is required on this pin. The UCD9081 can hold or stretch SCL (clock stretching) at any time. During an erase, the UCD9081 stretches SCL for a longer time. See Section 5.2.2 for more detail. SCL has a minimum frequency of 10 kHz and a maximum frequency of 100 kHz.

2.3.4 ADDRx
Device Address Inputs: Shortly after the RST is negated, ADDR1-ADDR4 are sampled by the UCD9081 and define the 4 LSBs for device address on the I2C bus. The upper 3 bits of address are hardcoded at 0x6 giving an addressable range of 0x60-0x6F. These addresses are selected using pullup or pulldown resistors on the ADDRx inputs. Connecting ADDR1-ADDR4 to VSS locates the device at I2C address of 0x60; connecting ADDR1-ADDR4 to VCC locates the device at the I2C address of 0x6F. Once the ADDRx pins are sampled, they then function as EN/GPIO, and they are driven to their default inactive state as defined by the device configuration.

2.3.5 ROSC
Oscillator input: This pin controls the device operating speed. A 100K pullup to Vcc is recommended but 1.75 V can be applied to this pin as well.

3 Software
The UCD9081 EVM GUI provides the optimum development mechanism for creating the configuration parameters file. Two user's guides are available: Advanced Sequencing and Monitoring Using the UCD9081 (SLVU272) and UCD9081 Power Supply Sequencer and Monitor EVM (SLVU249) containing installation and user instructions for the UCD9081 GUI.

Once the final configuration parameters file has been created, follow the procedures outlined in SLVS813 (and emphasized in this document) to configure only the memory areas described in Section 3.1.

NOTE: Use only the UCD9081EVM GUI with UCD9081 devices. Do not use UCD9080EVM GUI with UCD9081 devices because this corrupts the resulting configuration parameters file.

3.1 Data File Format
The configuration data is supplied in standard Intel format. Beginning at address 0x1080, 128 bytes of data are programmed, and beginning at address 0xE000, 512 bytes of data are programmed. Section 3.5 presents a sample configuration data file.

3.2 I2C Transactions
Programming the device with the configuration data requires I2C Write transactions. Reading the configuration data from the device requires I2C Write transactions and I2C Read transactions. Reading the configuration data can be used to verify the correct programming of the data following a write data operation. Section 3.6 presents the format of the I2C Write and Read transactions. Section 3.7 presents the set of pseudo I2C transactions necessary to write and read the sample configuration data presented in Section 3.5.
NOTE: The I2C write and read data transactions presented in Section 3.6 assume a maximum data transfer block size of 32 bytes. Each block is preceded by the target address. The UCD9081 is capable of supporting blocks sized from 2 bytes to 512 bytes, in multiples of two bytes (i.e., a 16-bit word). When writing data, it is critical that all 128 bytes of the data beginning at address 0x1080 be written, and that all 512 bytes of data beginning at address 0xE000 be written (i.e., it is not permitted to do a partial write of a data area).

3.3 Device Version
An I2C Read transaction can be used to read register 0x27; a value of 0x55 indicates that the UCD9081 device version is 5.5.

3.4 Checksum
The UCD9081 EVM GUI automatically calculates and inserts the checksum bytes at address 0xE1FE and 0xE1FF. These are shown in bold type in the sample files shown in Section 3.5.

3.5 Sample Configuration Data File

3.5.1 Factory Default

3.5.2 EVM Default Configuration
3.6 **I2C Write and Read Transaction Formats**

3.6.1 I2C Write Transaction:

```
<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>SLAVE ADDRESS</td>
<td>R/W</td>
<td>A</td>
<td>REGISTER ADDRESS</td>
<td>A</td>
<td>DATA</td>
<td>A/A</td>
<td>P</td>
</tr>
</tbody>
</table>
```

- '0' (write)
- From master to slave
 - A = acknowledge (SDA low)
 - \(\overline{A}\) = Not acknowledge (SDA high)
- From slave to master
 - S = START condition
 - P = STOP condition

Figure 1. Write

3.6.2 I2C Read Transaction:

```
<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>SLAVE ADDRESS</td>
<td>R/W</td>
<td>A</td>
<td>REGISTER ADDRESS</td>
<td>A</td>
<td>Sr</td>
<td>SLAVE ADDRESS</td>
<td>R/W</td>
<td>A</td>
<td>DATA</td>
<td>A/A</td>
<td>P</td>
</tr>
</tbody>
</table>
```

- '0' (write)
- '1' (read)
- From master to slave
 - A = acknowledge (SDA low)
 - \(\overline{A}\) = Not acknowledge (SDA high)
- From slave to master
 - S = START condition
 - P = STOP condition
 - Sr = Repeated START

Figure 2. Read

3.7 Pseudo I2C Write and Read Transactions

Section 3.7.1 and Section 3.7.2 present pseudo I2C transaction code, which was generated using the UCD9081EVM GUI (Save I2C Transactions feature). Note that in the following pseudo I2C transactions, a Data Length is specified. This value is not directly part of the I2C transaction; rather, its value is used within the Master to count the data transferred. At data transfer completion, the Master can generate "no-acknowledge" (NACK) to the Slave to end the transaction.

3.7.1 UCD9081 I2C Transactions for Writing User Data and PARAMS

I2C Write (Open the FLASH).

Device Address: 0x6F
Register Address: 0x2E
Data Length: 1

SLVA275B—January 2010—Revised November 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated
Data: 0x02
I2C Write (Base address: 0x1080)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0x10

I2C Write (Unlock and erase the FLASH)

Device Address: 0x6F
Register Address: 0x32
Data Length: 2
Data: 0xDC 0xBA

I2C Write (Data address: 0x1080)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0x10

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x55 0x73 0x65 0x72 0x20 0x64 0x61 0x74 0x61 0x75 0x73 0x65 0x6e 0x69 0x66 0x69 0x6e 0x67 0x75 0x72 0x61 0x74 0x69 0x6e 0x00

I2C Write (Data address: 0x10A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0x10

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00

I2C Write (Data address: 0x10C0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xC0 0x10

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00
I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00

I2C Write (Base address: 0xE000)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x00 0xE0

I2C Write (Unlock and erase the FLASH)

Device Address: 0x6F
Register Address: 0x32
Data Length: 2
Data: 0xDC 0xBA

I2C Write (Data address: 0xE000)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x00 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00

I2C Write (Data address: 0xE020)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x20 0xE0
I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x0F 0xFF 0x00 0x00

I2C Write (Data address: 0xE040)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x40 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0F 0xFF 0x00 0x00

I2C Write (Data address: 0xE060)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x60 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00 0x00 0x0F 0x00 0x00

I2C Write (Data address: 0xE080)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00 0x00 0x0F 0x00 0x00 0x00 0x02 0x00 0x02 0x0F 0x00 0x00

I2C Write (Data address: 0xE0A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00 0x00 0x57 0x00 0x00

I2C Write (Data address: 0xE0A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0xE0
I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0xFF 0x7F
0xFF 0xFF

I2C Write (Data address: 0xE0C0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xC0 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

I2C Write (Data address: 0xE0E0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xE0 0xE0

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

I2C Write (Data address: 0xE100)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x00 0xE1

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

I2C Write (Data address: 0xE120)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x20 0xE1
I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x04 0x00

I2C Write (Data address: 0xE140)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x40 0xE1

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x10 0x00 0x10 0x00

I2C Write (Data address: 0xE160)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x60 0xE1

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00 0xC0 0x02 0xF2 0x08 0x10 0x01 0x05 0xC0 0x55 0x00 0x05 0x00 0x05 0xFF 0x00 0x00

I2C Write (Data address: 0xE180)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0xE1

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00 0x04 0xD4 0x02 0xF2 0x08 0x10 0x01 0x05 0xC0 0x55 0x00 0x05 0x00 0x05 0xFF 0x00 0x00

I2C Write (Data address: 0xE1A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0xE1
I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00

I2C Write (Data address: 0xE1C0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xC0 0xE1

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x00

I2C Write (Data address: 0xE1E0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xE0 0xE1

I2C Write (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
Data: 0x00 0x3C

I2C Write (Lock and close the FLASH)

Device Address: 0x6F
Register Address: 0x2E
Data Length: 1
Data: 0x00
3.7.2 UCD9081 I2C Transactions for Reading User Data and PARAMS

I2C Write (Data address: 0x1080)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0x10

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0x10A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0x10

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0x10C0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xC0 0x10

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0x10E0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xE0 0x10

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0x00E0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x00 0xE0
I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE020)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x20 0xE0

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE040)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x40 0xE0

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE060)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x60 0xE0

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE080)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0xE0

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE0A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0xE0
I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE0C0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xC0 0xE0

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE0E0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xE0 0xE0

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE100)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x00 0xE1

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE120)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x20 0xE1

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE140)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x40 0xE1
I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE160)
-------- Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x60 0xE1

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE180)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0x80 0xE1

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE1A0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xA0 0xE1

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE1C0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xC0 0xE1

I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32

I2C Write (Data address: 0xE1E0)

Device Address: 0x6F
Register Address: 0x30
Data Length: 2
Data: 0xE0 0xE1
I2C Read (Data)

Device Address: 0x6F
Register Address: 0x32
Data Length: 32
4 User Configuration

4.1 Configuration Parameter Memory Map

Table 1 shows the 512-byte configuration parameters memory map. User-configurable bytes in bold are described in the Section 4.2; adjacent groups of user-configurable bytes are distinguished in the table by alternating use of italics. Other bytes must remain exactly as shown in Table 1.

<table>
<thead>
<tr>
<th>Address</th>
<th>b0</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>b6</th>
<th>b7</th>
<th>b8</th>
<th>b9</th>
<th>bA</th>
<th>bB</th>
<th>bC</th>
<th>bD</th>
<th>bE</th>
<th>bF</th>
</tr>
</thead>
<tbody>
<tr>
<td>E000</td>
<td>0x00</td>
</tr>
<tr>
<td>E010</td>
<td>0x00</td>
</tr>
<tr>
<td>E020</td>
<td>0x00</td>
</tr>
<tr>
<td>E030</td>
<td>0x00</td>
</tr>
<tr>
<td>E040</td>
<td>0x00</td>
</tr>
<tr>
<td>E050</td>
<td>0x00</td>
</tr>
<tr>
<td>E060</td>
<td>0x00</td>
</tr>
<tr>
<td>E070</td>
<td>0x00</td>
</tr>
<tr>
<td>E080</td>
<td>0x10</td>
<td>0x11</td>
<td>0x12</td>
<td>0x13</td>
<td>0x14</td>
<td>0x15</td>
<td>0x16</td>
<td>0x17</td>
<td>0x18</td>
<td>0x19</td>
<td>0x1A</td>
<td>0x1B</td>
<td>0x1C</td>
<td>0x1D</td>
<td>0x1E</td>
<td>0x1F</td>
</tr>
<tr>
<td>E090</td>
<td>0x04</td>
<td>0x05</td>
<td>0x06</td>
<td>0x07</td>
<td>0x08</td>
<td>0x09</td>
<td>0x0A</td>
<td>0x0B</td>
<td>0x0C</td>
<td>0x0D</td>
<td>0x0E</td>
<td>0x0F</td>
<td>0x10</td>
<td>0x11</td>
<td>0x12</td>
<td>0x13</td>
</tr>
<tr>
<td>E0A0</td>
<td>0x19</td>
<td>0x1A</td>
<td>0x1B</td>
<td>0x1C</td>
<td>0x1D</td>
<td>0x1E</td>
<td>0x1F</td>
<td>0x20</td>
<td>0x21</td>
<td>0x22</td>
<td>0x23</td>
<td>0x24</td>
<td>0x25</td>
<td>0x26</td>
<td>0x27</td>
<td>0x28</td>
</tr>
<tr>
<td>E0B0</td>
<td>0xF0</td>
<td>0xF1</td>
<td>0xF2</td>
<td>0xF3</td>
<td>0xF4</td>
<td>0xF5</td>
<td>0xF6</td>
<td>0xF7</td>
<td>0xF8</td>
<td>0xF9</td>
<td>0xFA</td>
<td>0xFB</td>
<td>0xFC</td>
<td>0xFD</td>
<td>0xFE</td>
<td>0xFF</td>
</tr>
<tr>
<td>E0C0</td>
<td>0x00</td>
</tr>
<tr>
<td>E0D0</td>
<td>0x00</td>
</tr>
<tr>
<td>E0E0</td>
<td>0x00</td>
</tr>
<tr>
<td>E0F0</td>
<td>0x00</td>
</tr>
<tr>
<td>E100</td>
<td>0x00</td>
</tr>
<tr>
<td>E110</td>
<td>0x00</td>
</tr>
<tr>
<td>E120</td>
<td>0x00</td>
</tr>
<tr>
<td>E130</td>
<td>0x00</td>
</tr>
<tr>
<td>E140</td>
<td>0x00</td>
</tr>
<tr>
<td>E150</td>
<td>0x00</td>
</tr>
<tr>
<td>E160</td>
<td>0x00</td>
</tr>
<tr>
<td>E170</td>
<td>0x00</td>
</tr>
<tr>
<td>E180</td>
<td>0x00</td>
</tr>
<tr>
<td>E190</td>
<td>0x00</td>
</tr>
</tbody>
</table>

Table 1. Configuration Parameters Memory Map
4.2 Configuration Parameter Detail

4.2.1 SequenceEventParameters

The SequenceEventParameters field in the configuration parameters specifies the rail identification, monitoring status, and sequencing options for each rail. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE080</td>
<td>1</td>
<td>0x50</td>
<td>Rail 1 identification, monitoring status and sequencing options</td>
</tr>
<tr>
<td>0xE081</td>
<td>1</td>
<td>0x51</td>
<td>Rail 2 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE082</td>
<td>1</td>
<td>0x52</td>
<td>Rail 3 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE083</td>
<td>1</td>
<td>0x53</td>
<td>Rail 4 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE084</td>
<td>1</td>
<td>0x54</td>
<td>Rail 5 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE085</td>
<td>1</td>
<td>0x55</td>
<td>Rail 6 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE086</td>
<td>1</td>
<td>0x56</td>
<td>Rail 7 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE087</td>
<td>1</td>
<td>0x57</td>
<td>Rail 8 identification, monitoring status, and sequencing options</td>
</tr>
<tr>
<td>0xE088</td>
<td>1</td>
<td>0x00</td>
<td>GPO1 identification, sequencing options</td>
</tr>
<tr>
<td>0xE089</td>
<td>1</td>
<td>0x49</td>
<td>GPO2 identification, sequencing options</td>
</tr>
<tr>
<td>0xE08A</td>
<td>1</td>
<td>0x4A</td>
<td>GPO3 identification, sequencing options</td>
</tr>
<tr>
<td>0xE08B</td>
<td>1</td>
<td>0x4B</td>
<td>GPO4 identification, sequencing options</td>
</tr>
</tbody>
</table>

The format of each register is as follows:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MON</td>
<td>RAIL/GPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAIL

Rail #(n) – 1, RAIL = 0 through 7

GPO

GPO #(n) + 7, GPO = 8, 9, 0xA, 0xB

MON

Meaning

0 Do not monitor rail status (for event sequencing of GPOs)
1 Monitor rail status

ENABLE

Meaning

00 Sequence is disabled
01 Sequence is triggered after delay after sequence event
10 Sequence is triggered after parent rail achieves voltage level
11 Sequence is triggered after delay after parent rail achieves voltage regulation
4.2.2 SequenceEventLink

The SequenceEventLink field allows a parent rail (monitored input) to be specified for each ENx and GPOx output. The RESEQ bit (sequence after shutdown) allows an enable or GPO to be marked to sequence the system (as defined by the current sequencer configuration) after it has been shut down. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>SIZE</th>
<th>DEFAULT VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE08C</td>
<td>1</td>
<td>0x01</td>
<td>Rail 1 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE08D</td>
<td>1</td>
<td>0x00</td>
<td>Rail 2 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE08E</td>
<td>1</td>
<td>0x01</td>
<td>Rail 3 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE08F</td>
<td>1</td>
<td>0x04</td>
<td>Rail 4 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE090</td>
<td>1</td>
<td>0x01</td>
<td>Rail 5 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE091</td>
<td>1</td>
<td>0x04</td>
<td>Rail 6 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE092</td>
<td>1</td>
<td>0x05</td>
<td>Rail 7 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE093</td>
<td>1</td>
<td>0x06</td>
<td>Rail 8 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE094</td>
<td>1</td>
<td>0x00</td>
<td>GPO1 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE095</td>
<td>1</td>
<td>0x00</td>
<td>GPO2 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE096</td>
<td>1</td>
<td>0x00</td>
<td>GPO3 parent rail identifier and resequence indicator</td>
</tr>
<tr>
<td>0xE097</td>
<td>1</td>
<td>0x00</td>
<td>GPO4 parent rail identifier and resequence indicator</td>
</tr>
</tbody>
</table>

The format of each register is as follows:

```
0  RESEQ  PARENTRAIL
```

<table>
<thead>
<tr>
<th>RESEQ Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARENTRAIL Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
</tr>
<tr>
<td>0x0001</td>
</tr>
<tr>
<td>0x0010</td>
</tr>
<tr>
<td>0x0011</td>
</tr>
<tr>
<td>0x0100</td>
</tr>
<tr>
<td>0x0101</td>
</tr>
<tr>
<td>0x0110</td>
</tr>
<tr>
<td>0x0111</td>
</tr>
</tbody>
</table>
4.2.3 SequenceEventData

The SequenceEventData field in the configuration parameters specifies the rail and GPO sequencing and shutdown parameters. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE098</td>
<td>2</td>
<td>0xE005</td>
<td>Rail 1 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE09A</td>
<td>2</td>
<td>0xEA005</td>
<td>Rail 2 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE09C</td>
<td>2</td>
<td>0xEA032</td>
<td>Rail 3 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE09E</td>
<td>2</td>
<td>0xEA033</td>
<td>Rail 4 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0A0</td>
<td>2</td>
<td>0xEA033</td>
<td>Rail 5 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0A2</td>
<td>2</td>
<td>0xEA035</td>
<td>Rail 6 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0A4</td>
<td>2</td>
<td>0xEA035</td>
<td>Rail 7 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0A6</td>
<td>2</td>
<td>0xEA000</td>
<td>Rail 8 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0A8</td>
<td>2</td>
<td>0xEA000</td>
<td>GPO1 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0AA</td>
<td>2</td>
<td>0xEA000</td>
<td>GPO2 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0AC</td>
<td>2</td>
<td>0xEA000</td>
<td>GPO3 sequencing and shutdown parameters</td>
</tr>
<tr>
<td>0xE0AE</td>
<td>2</td>
<td>0xEA000</td>
<td>GPO4 sequencing and shutdown parameters</td>
</tr>
</tbody>
</table>

The format for each register is as follows. The value in the ENABLE field of the SequenceEventParameters register determines the measure represented by the value in the RAILDATA field of the SequenceEventData register.

<table>
<thead>
<tr>
<th>SEQPARAM</th>
<th>Meaning</th>
<th>ENABLE (SequenceEventParameters)</th>
<th>RAILDATA Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Log only</td>
<td>01</td>
<td>Delay (in units of ms)</td>
</tr>
<tr>
<td>001</td>
<td>Sequence</td>
<td>10</td>
<td>Voltage (in units of Vref/1024 volts)</td>
</tr>
<tr>
<td>010</td>
<td>Reserved</td>
<td>11</td>
<td>Delay (in units of ms)</td>
</tr>
<tr>
<td>011</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Retry 1 times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Retry 0 times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.4 Dependency Masks

The Dependency Masks field in the configuration parameters defines the rail dependency masks used for rail and GPO shutdown. This mask represents the set of other rails and GPOs that must be shut down when this rail shuts down. Note that because only rails are monitored, the table only has entries for the shutdown of rails. In the dependency mask itself, there are bits that allow for GPO shutdown.

The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>SIZE</th>
<th>DEFAULT VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE100</td>
<td>2</td>
<td>0x007F</td>
<td>Dependency mask for rail 1</td>
</tr>
<tr>
<td>0xE102</td>
<td>2</td>
<td>0x0001</td>
<td>Dependency mask for rail 2</td>
</tr>
<tr>
<td>0xE104</td>
<td>2</td>
<td>0x0002</td>
<td>Dependency mask for rail 3</td>
</tr>
<tr>
<td>0xE106</td>
<td>2</td>
<td>0x0004</td>
<td>Dependency mask for rail 4</td>
</tr>
<tr>
<td>0xE108</td>
<td>2</td>
<td>0x0008</td>
<td>Dependency mask for rail 5</td>
</tr>
<tr>
<td>0xE10A</td>
<td>2</td>
<td>0x0010</td>
<td>Dependency mask for rail 6</td>
</tr>
<tr>
<td>0xE10C</td>
<td>2</td>
<td>0x0020</td>
<td>Dependency mask for rail 7</td>
</tr>
<tr>
<td>0xE10E</td>
<td>2</td>
<td>0x0040</td>
<td>Dependency mask for rail 8</td>
</tr>
</tbody>
</table>

The format for each register is as follows:

```
0 0 0 0 0 0 0 0 0 0 GPO4 GPO3 GPO2 GPO1 RAIL8 RAIL7 RAIL6 RAIL5 RAIL4 RAIL3 RAIL2 RAIL1
```

RAILn or GPOn Meaning
0 Shutdown of this rail does not shut down RAILn or GPOn.
1 Shutdown of this rail shuts down RAILn or GPOn.
4.2.5 UnderVoltageThresholds

The UnderVoltageThresholds field in the configuration parameters specifies each rail undervoltage threshold that is used when monitoring this rail. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE110</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 8</td>
</tr>
<tr>
<td>0xE112</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 7</td>
</tr>
<tr>
<td>0xE114</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 6</td>
</tr>
<tr>
<td>0xE116</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 5</td>
</tr>
<tr>
<td>0xE118</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 4</td>
</tr>
<tr>
<td>0xE11A</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 3</td>
</tr>
<tr>
<td>0xE11C</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 2</td>
</tr>
<tr>
<td>0xE11E</td>
<td>2</td>
<td>0x0000</td>
<td>Undervoltage threshold for rail 1</td>
</tr>
</tbody>
</table>

The format for each register is as follows:

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

![Vraw]

The voltage conversion depends on the configured voltage reference, and the pullup/pulldown resistors used on the board for each rail. The voltage reference is selected as either 2.5 V (internal) or V\text{CC} (external). The formula to convert the desired rail UnderVoltageThreshold to Vraw follows:

Without external rail voltage divider:

\[
V_{\text{raw}} = \frac{1024 \times V_{\text{RAILUV}}}{V_{\text{REF}}}
\]

(1)

With external rail voltage divider:

\[
V_{\text{raw}} = \frac{1024 \times V_{\text{RAILUV}} \times R_{\text{PULLDOWN}}}{V_{\text{REF}} \times (R_{\text{PULLDOWN}} + R_{\text{PULLUP}})}
\]

(2)
4.2.6 OverVoltageThresholds

The OverVoltageThresholds field in the configuration parameters specifies each rail overvoltage threshold that is used when monitoring this rail. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE120</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 8</td>
</tr>
<tr>
<td>0xE122</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 7</td>
</tr>
<tr>
<td>0xE124</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 6</td>
</tr>
<tr>
<td>0xE126</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 5</td>
</tr>
<tr>
<td>0xE128</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 4</td>
</tr>
<tr>
<td>0xE12A</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 3</td>
</tr>
<tr>
<td>0xE12C</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 2</td>
</tr>
<tr>
<td>0xE12E</td>
<td>2</td>
<td>0x0400</td>
<td>Overvoltage threshold for rail 1</td>
</tr>
</tbody>
</table>

The format for each register is as follows:

```
   15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Vraw
```

The voltage conversion depends on the configured voltage reference, and the pullup/pulldown resistors used on the board for each rail. The voltage reference is selected as either 2.5 V (internal) or V_{CC} (external). The formula to convert the desired rail OverVoltageThreshold to Vraw follows:

Without external rail voltage divider:

$$ V_{raw} = \frac{1024 \times V_{RAIL\text{OV}}}{V_{REF}} $$

(3)

With external voltage divider:

$$ V_{raw} = \frac{1024 \times V_{RAIL\text{OV}} \times R_{PULLDOWN}}{V_{REF} \times R_{PULLDOWN} + R_{PULLUP}} $$

(4)

4.2.7 RampTime

The RampTime field in the configuration parameters specifies the maximum amount of time for each rail to achieve regulation. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>SIZE</th>
<th>DEFAULT VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE130</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 1</td>
</tr>
<tr>
<td>0xE132</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 2</td>
</tr>
<tr>
<td>0xE134</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 3</td>
</tr>
<tr>
<td>0xE136</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 4</td>
</tr>
<tr>
<td>0xE138</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 5</td>
</tr>
<tr>
<td>0xE13A</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 6</td>
</tr>
<tr>
<td>0xE13C</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 7</td>
</tr>
<tr>
<td>0xE13E</td>
<td>2</td>
<td>0x0FA0</td>
<td>Maximum voltage ramp time for rail 8</td>
</tr>
</tbody>
</table>

```
   15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RAMPTIME
```

$$ \text{RAMPTIME} = RAILn \text{ RailTime} \text{ (in units of ms)}. $$
4.2.8 OutOfRegulationWidth

The OutOfRegulationWidth field in the configuration parameters specifies the maximum amount of time that the rail is allowed to be out of regulation before an error is declared (glitch duration). The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE140</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 1</td>
</tr>
<tr>
<td>0xE142</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 2</td>
</tr>
<tr>
<td>0xE144</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 3</td>
</tr>
<tr>
<td>0xE146</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 4</td>
</tr>
<tr>
<td>0xE148</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 5</td>
</tr>
<tr>
<td>0xE14A</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 6</td>
</tr>
<tr>
<td>0xE14C</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 7</td>
</tr>
<tr>
<td>0xE14E</td>
<td>2</td>
<td>0x0010</td>
<td>The out-of-regulation duration permissible without flagging error for rail 8</td>
</tr>
</tbody>
</table>

The contents of this register are as follows:

```
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

OORW = RAILn out-of-regulation glitch width (in units of 1/10 ms).

4.2.9 UnsequenceTime

The UnsequenceTime field in the configuration parameters specifies the amount of time that each rail must delay before unsequencing. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>SIZE</th>
<th>DEFAULT VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE150</td>
<td>2</td>
<td>0xC0FF</td>
<td>Unsequence delay for rail 1</td>
</tr>
<tr>
<td>0xE152</td>
<td>2</td>
<td>0xC1FF</td>
<td>Unsequence delay for rail 2</td>
</tr>
<tr>
<td>0xE154</td>
<td>2</td>
<td>0xC2FF</td>
<td>Unsequence delay for rail 3</td>
</tr>
<tr>
<td>0xE156</td>
<td>2</td>
<td>0xC3FF</td>
<td>Unsequence delay for rail 4</td>
</tr>
<tr>
<td>0xE158</td>
<td>2</td>
<td>0xC4FF</td>
<td>Unsequence delay for rail 5</td>
</tr>
<tr>
<td>0xE15A</td>
<td>2</td>
<td>0xC5FF</td>
<td>Unsequence delay for rail 6</td>
</tr>
<tr>
<td>0xE15C</td>
<td>2</td>
<td>0xC6FF</td>
<td>Unsequence delay for rail 7</td>
</tr>
<tr>
<td>0xE15E</td>
<td>2</td>
<td>0xC7FF</td>
<td>Unsequence delay for rail 8</td>
</tr>
<tr>
<td>0xE160</td>
<td>2</td>
<td>0x0000</td>
<td>Unsequence delay for GPO1</td>
</tr>
<tr>
<td>0xE162</td>
<td>2</td>
<td>0xC000</td>
<td>Unsequence delay for GPO2</td>
</tr>
<tr>
<td>0xE164</td>
<td>2</td>
<td>0xC000</td>
<td>Unsequence delay for GPO3</td>
</tr>
<tr>
<td>0xE166</td>
<td>2</td>
<td>0xC000</td>
<td>Unsequence delay for GPO4</td>
</tr>
</tbody>
</table>

The contents of this register are as follows:

```
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
COPYSEQPARAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

COPYSEQPARAM = Copy SEQPARAM bit value (bits 15:13) in SequenceEvent Data register

USTIME = RAILn UnsequenceTime (in units of ms).
4.2.10 EnablePolarity

The EnablePolarity field in the configuration parameters specifies whether each power-supply enable or GPO is to be configured active-high or active-low. The address map for these registers is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE168</td>
<td>2</td>
<td>0x2004</td>
<td>Polarity for rail 1 enable</td>
</tr>
<tr>
<td>0xE16A</td>
<td>2</td>
<td>0x2008</td>
<td>Polarity for rail 2 enable</td>
</tr>
<tr>
<td>0xE16C</td>
<td>2</td>
<td>0x1804</td>
<td>Polarity for rail 3 enable</td>
</tr>
<tr>
<td>0xE16E</td>
<td>2</td>
<td>0x1802</td>
<td>Polarity for rail 4 enable</td>
</tr>
<tr>
<td>0xE170</td>
<td>2</td>
<td>0x1808</td>
<td>Polarity for rail 5 enable</td>
</tr>
<tr>
<td>0xE172</td>
<td>2</td>
<td>0x1810</td>
<td>Polarity for rail 6 enable</td>
</tr>
<tr>
<td>0xE174</td>
<td>2</td>
<td>0x1820</td>
<td>Polarity for rail 7 enable</td>
</tr>
<tr>
<td>0xE176</td>
<td>2</td>
<td>0x2010</td>
<td>Polarity for rail 8 enable</td>
</tr>
<tr>
<td>0xE178</td>
<td>2</td>
<td>0x2000</td>
<td>Polarity for GPO1</td>
</tr>
<tr>
<td>0xE17A</td>
<td>2</td>
<td>0x2020</td>
<td>Polarity for GPO2</td>
</tr>
<tr>
<td>0xE17C</td>
<td>2</td>
<td>0x2040</td>
<td>Polarity for GPO3</td>
</tr>
<tr>
<td>0xE17E</td>
<td>2</td>
<td>0x2080</td>
<td>Polarity for GPO4</td>
</tr>
</tbody>
</table>

The contents of this register are as follows:

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL</td>
<td>POL</td>
<td>DEFAULT VALUES as specified previously</td>
<td></td>
</tr>
</tbody>
</table>

POL

- **0**: Rail enable or GPO is active-low.
- **1**: Rail enable or GPO is active-high.

4.2.11 SaveRailLog

The SaveRailLog field in the configuration parameters specifies whether each rail is marked to write the error log to flash upon rail failure. If the rail is marked this way, then a shutdown of this rail is logged into non-volatile memory. In this case, the NVERRLOG bit (STATUS register) is set to 1 upon device initialization and must be cleared before normal sequencer operation is restored. See the section titled *Resetting the Flash Error Logs* for detailed instructions.

The contents of this register are as follows:

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RAIL8</td>
<td>RAIL7</td>
<td>RAIL6</td>
<td>RAIL5</td>
<td>RAIL4</td>
<td>RAIL3</td>
<td>RAIL2</td>
<td>RAIL1</td>
<td></td>
</tr>
</tbody>
</table>

RAILn

- **0**: Shutdown of this rail will not log this event.
- **1**: Shutdown of this rail will log this event.

The default value for this register is 0x0000.
4.2.12 ReferenceSelect

The ReferenceSelect field in the configuration parameters specifies which voltage reference is used on the UCD9080. The selected reference can be internal (2.5-V), or external via V_{CC} (3.3 V). The register address is 0xE186 and contents are as follows:

<table>
<thead>
<tr>
<th>SELREF</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>External reference selected (VCC)</td>
</tr>
<tr>
<td>001</td>
<td>Internal reference selected (2.5 V)</td>
</tr>
</tbody>
</table>

The default value for this register is 0x08F2, which selects the external reference.

4.2.13 LastUnusedSeq

The LastUnusedSeq field in the configuration parameters specifies the amount of time for the last rail to be shut down without creating an error. The register address is 0xE18E and contents are as follows:

<table>
<thead>
<tr>
<th>LUTIME</th>
</tr>
</thead>
</table>

\[LUTIME = \text{Maximum value UTIME} + 255 \text{ (in units of ms)} \]

The default value for this register is 0x08FF.

4.2.14 IgnoreGlitchAlarms

The IgnoreGlitchAlarms field in the configuration parameters can be used to suppress glitches from being logged. Refer to the Voltage Monitoring section in SLVS813 for a full description. The register address is E06A and contents are as follows:

<table>
<thead>
<tr>
<th>Rx = Rail #</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8 R7 R6 R5 R4 R3 R2 R1</td>
</tr>
</tbody>
</table>

Default = 0x00
Write 1 to bit location to suppress glitch alarms
4.2.15 IgnoreFlashErrorLog

The IgnoreFlashErrorLog bit in the configuration parameters can be used to allow sequencing when entries are present in the flash error log (NVERRLOG bit is set to 1). Refer to the Resetting the Flash Error Log section in SLVS813 for a full description. The register address is E191 and contents are as follows:

```
0   6   5   4   3   2   1   0
0   0   0   0   0   0   0   IFEL
```

IFEL = Ignore flash error log
Default = 0x00
Write 1 to bit 0 location to ignore flash error log

4.2.16 Checksum

The Checksum word is the 1’s complement of the sum of the words from 0xE000 to 0xE1FD in the configuration parameters. The checksum is stored in the last word of the device parameter section (0xE1FF is high byte and 0xE1FE is the low byte). The area check-summed (and the checksum) is stored low-byte/high-byte (“Little Endian”) format.
5 Additional Considerations

5.1 Embedded Application

Because the UCD9081 exhibits much control over a typical power system, the embedded application is not suspended or delayed while waiting for I2C commands. The embedded application provides mechanisms to always prioritize local sequencing and monitoring when I2C communication is interrupted. These mechanisms are primarily timers. Generally, if the timers expire, then the I2C master sees a NACK and must re-issue the command.

5.2 Timing

The internal timing reference for the UCD9081 can vary as much as ±20% over process, temperature, and supply voltage. Delay time values used in the following sections are listed as nominal, and the user must apply an appropriate timing guard band.

5.2.1 UCD9081 Startup

I2C communication with the UCD9081 cannot be established immediately after power is applied. On power up, the UCD9081 performs several operations on the contents of the user parameter section. A RESET delay is incurred during this operation, and the digital I/O pins are in a high-impedance state. At the end of this operation, the sequencer application starts and I2C communication may commence.

The startup delay can vary based on the cases that follow;

• Normal case: The UCD9081 performs a checksum test on the contents of the user parameter section. If the test passes, then the UCD9081 compares the contents of the user parameters section to the contents of the application (or last-known-good configuration) parameters section to see if the parameters have changed. If the two areas match, then the sequencer application starts. This nominally takes 35 ms as shown in Figure 3.

• Configuration change-pass checksum case: If the user parameter area has been updated but the device has not been RESET (see UCD9081 data sheet RESET description) then the user and application parameter areas do not match. After the next RESET, the checksum test occurs. If the test passes, then the UCD9081 copies the user parameters to the application parameters area. This nominally takes 102 ms as shown in Figure 4. Subsequent power ups (with unchanged user parameters) fall into the normal category.

• Configuration change-fail checksum case: If the checksum test fails, then the UCD9081 copies the application parameters back to the user parameters area. This nominally takes 102 ms as shown in Figure 4.
5.2.2 Clock Stretching After Flash Erase

During three command operations, the UCD9081 holds SCL low while an erase is being performed. The UCD9081 performs an erase just after the WDATA register is written with 0xBADC. See the following UCD9081 data sheet sections for detailed explanation of when the WDATA register is written with 0xBADC.

- RESETTING THE FLASH ERROR LOG
- CONFIGURING THE UCD9081
- USER DATA

After an erase, the I2C master may either wait for SCL to be released or wait approximately 12 ms before issuing another transaction.

5.2.3 Bit Timeout

The UCD9081 enforces a maximum bit timeout period of $1/f_{SCL\,MIN}$ (100 µs) for the bit cases described in the following list. This bit period must be met or else the UCD9081 may exit a transaction, causing a NACK to occur. For the bit cases not described in the following list, the byte timeout applies as described in Section 5.2.4.
Additional Considerations

- START bit (Figure 5): SCL must fall within 100 µs of SDA falling.

![Figure 5. START Bit Requirement](image1)

- Eighth data bit of write command (Figure 6): SCL must fall within 100 µs of SCL rising.

![Figure 6. Eighth Bit of Write Command Requirements](image2)
 Additional Considerations

- Read/write bit of slave address command (Figure 7): SCL must fall within 100 µs of SCL rising.

![Figure 7. Read/Write Bit Requirements](image)

- Acknowledge bit (Figure 8): Acknowledge (ACK) or no-acknowledge (NACK) occurs on the ninth rising edge of SCL during each byte. After ACK or NACK, SCL must fall within 100 µs of SCL rising.

![Figure 8. Acknowledge Bit Requirements](image)

5.2.4 Byte or Transaction Timeout

The UCD9081 enforces a maximum byte or transaction timeout period of approximately 5 ms on the I2C master. This time is measured from the previous bytes falling SDA (during START, or repeated START) to the current bytes falling SDA (during START, or repeated START). See Figure 9. This timeout is not enforced for the cases when the UCD9081 holds SCL low (see Section 5.2.2) to insert additional wait states (i.e., the byte timer is reset and does not expire during the stretch period).
Additionally, the byte timeout period is reset when a new bit (rising edge of SCL) arrives. So, excluding the four exceptions described in Section 5.2.3, the byte timeout period applies.

6 References
1. UCD9081, 8-Channel Power Supply Sequencer and Monitor With Error Logging data sheet (SLVS813)
2. UCD9081 Power Supply Sequencer and Monitor EVM user's guide (SLVU249)
3. Advanced Sequencing and Monitoring Using the UCD9081 user's guide (SLVU272)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Replication of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible for altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated TI products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and</td>
</tr>
<tr>
<td></td>
<td>Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and</td>
</tr>
<tr>
<td></td>
<td>Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics &</td>
</tr>
<tr>
<td></td>
<td>Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated