Extending the Wide Output Voltage Capability of the TPS6108x Boost Converter

ABSTRACT

This application report explains how to extend the wide output voltage range capability of the TPS6108x by a factor of two using a discrete charge pump.

Introduction

In a normal circuit configuration, the TPS6108x is capable of providing an output voltage up to 27 V. This output range can be doubled with the addition of a charge pump consisting of only two additional diodes and two capacitors (see Figure 1). With the additional charge pump, the TPS6108x can provide output voltages up to 54 V. Figure 2 shows the discrete charge pump used to achieve this extended range of voltages.

Figure 1. Discrete Charge Pump Used to Extend the Voltage Range
Setting the Output Voltage

Typically, when a charge pump is tied to a converter to provide a secondary output, the charge pump output is unregulated. However, because the charge pump provides the primary output, the feedback circuitry in this application is tied to the charge pump output for better regulation. The same TPS6108x output voltage equation is valid for setting the output voltage with the charge pump configuration. For ease of finding resistors and for minimizing noise injection problems, the quantity R1 plus R2 should be kept less than 1 MΩ, which typically results in choosing R2 between 15 kΩ and 40 kΩ. These values vary slightly from the data sheet (SLVS644) recommendation because the output voltage range is different.

To set the output voltage, select the values of R1 and R2 according to Equation 1.

\[R_1 = R_2 \times \left(\frac{V_{out}}{1.229 \text{ V}} - 1 \right) \]

(1)

The feedforward capacitor should be chosen by following the guidelines suggested in the data sheet by keeping the zero frequency between 1 kHz to 10 kHz.

\[F_z = \frac{1}{2\pi R_1 \times C_1} \]

(2)

As stated in the data sheet, for high-output voltage, the zero and pole are further apart which makes the feedforward capacitor effective.

For this example, R1 and R2 were chosen to be 681 kΩ and 18.2 kΩ, respectively, to set a 48-V output voltage. Initially, the value for R2 was chosen to be 25 kΩ, but this value resulted in R1 and R2 being close to 1 MΩ. Therefore, the R2 value was decreased and the R1 value was recalculated. A value near 18.2 kΩ for R2 also would have been acceptable. A zero frequency of 2 kHz then was chosen to determine Cff (C1), which rounded to the nearest standard capacitor value, is 120 pF. Because a high-output voltage is being set, and R1 is much larger than R2, the zero and pole frequencies are further apart and the pole has little effect on the phase and gain at the crossover frequency.

Transient analysis or frequency analysis should be used to verify that the converter is operating with acceptable performance. In this example, frequency analysis was used and the plot shown in Figure 3 verifies that the components chosen for this application resulted in acceptable loop characteristics.
Figure 3. Open-Loop Gain and Phase of TPS6108x Boost Converter With an Attached Charge Pump, 48-V Output With 70 mA of Load.

Charge Pump Capacitor
The charge pump capacitor (C7) is recommended to be a 1-μF ceramic capacitor rated for a voltage greater than 1/2 the output voltage. In Figure 4, the difference between trace 4 and trace 3 shows the voltage across this capacitor, which is half the voltage of the 48-V output.

Output Capacitor
Because the charge pump is in a voltage-doubling configuration, the voltage on the OUT pin of the TPS6108x is approximately half of the output voltage. See Figure 4 for an example of voltage waveforms observed on a 48-V output boost/charge pump circuit. Although the user may opt to choose higher voltage-rated output capacitors tied to ground from both the TPS6108x OUT pin and from the discrete charge pump output, it is slightly more cost-effective, in this example, to stack lower voltage-rated capacitors (C5 and C4) on top of one another as shown in Figure 2. Neither configuration has a clear operational advantage over the other. The trade-offs, such as required voltage ratings and equivalent capacitances, in each configuration affect the overall cost. In either configuration, placing a 0.1-μF capacitor between the output of the charge pump and ground to filter out high-frequency switching spikes is recommended. For the output capacitors of the boost and charge pump, 4.7-μF or 10-μF ceramic capacitors are recommended. Figure 5 shows a typical waveform of the charge pump output ripple. Additional post regulation filtering may be required if lower output ripple is desired.

Circuit Waveforms
In Figure 4, channel 1 (C1) is the output waveform of the charge pump; channel 2 (C2) is the output waveform of the TPS6108x OUT pin; channel 3 (C3) is the positive referenced terminal of the charge pump capacitor; and channel 4 (C4) is the negative referenced terminal of the charge pump capacitor (see Figure 4).
Figure 5 shows a typical output ripple waveform of an ac-coupled, 48-V output at 70 mA of load. The output has two 4.7-μF output capacitors stacked on top of each other, shown in Figure 2, with an additional 0.1-μF capacitor tied from output to ground for high-frequency filtering.
Output Current Capability

The trade-off for extending the output voltage up to 2x the TPS6108x output voltage is reduced output current capability. Because the charge pump doubles the output voltage from the normal boost converter, the output current capability is approximately halved as compared to the boost converter output current capability. Although output current is halved, the output power remains the same. This reduction in output current is a result of the current-limiting protection of the internal MOSFET of the TPS6108x, which effectively sets a maximum output power capability. Therefore, the total output power capability is approximately equal to the normal boost converter. The actual output power capability in this configuration is typically reduced by 1% to 2%, due to additional power losses in the added diodes and capacitors. Actual losses depend on the specific characteristics of chosen components and operating parameters.

Conclusion

To increase the output voltage capability of TPS6108x family of switching converters, a charge pump attached to the switch node and output terminal of the IC can be used. This added circuitry is necessary for applications which require an output voltage going beyond the wide range of the TPS6108x. Although this added circuitry allows one to double the output voltage capability of the TPS6108x, it does not double the output power capability.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accomplished by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
<td>www.ti.com/broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
<td>www.ti.com/digitalcontrol</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
<td>www.ti.com/military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
<td>www.ti.com/opticalnetwork</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
<td>www.ti.com/telephony</td>
</tr>
<tr>
<td>Low Power Wireless</td>
<td>Video & Imaging</td>
<td>www.ti.com/video</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated