Protecting the TPS233x Hot-Swap Controller in a High-Transient Environment

Edward Jung

ABSTRACT

The TPS233x hot-swap controller has several pins tied to the power bus in a typical application. This exposes the TPS233x to potentially damaging transients whenever the TPS233x disconnects the load from the bus. Clamping the bus voltage with a transient voltage suppressor (TVS) protects the TPS233x in some cases, but not in all cases. Additional protection can be gained by decoupling the TPS233x from the power bus using the method described in this application report.

Introduction

Figure 1 shows a model of the power bus and hot-swap circuit. Lw and Rw model the power bus; R, D, C, Rsense, Rds(on), and S1 model the hot-swap circuit.

Interrupting the load current via S1 excites the Rw-Lw-C tank circuit and causes a voltage transient or "ringing" at node AA. If the TVS allows this transient to exceed 15 V, then the TPS233x is damaged if any of its pins are tied to node AA.

Figure 2 shows a typical TPS233x implementation where the IN pin is directly tied to node AA and the ISET and ISENSE pins are each tied to node AA through a resistor.
The TVS must not conduct at normal bus voltages, and the TVS must limit bus transients to 15 V. These boundary conditions are easily satisfied in a 5-V, hot-swap design, but they are difficult to satisfy in a 12-V, hot-swap design because accuracy considerations and non-ideal TVS characteristics leave little design margin.

Consider a system where the bus-voltage regulation is 5% and the hot-swap, short-circuit output current is limited to 40 A by circuit parasitics.

In a 5-V, hot-swap design, a SMAJ5.0A TVS clamps the bus voltage to a safe level. The SMAJ5.0A characteristics as detailed in the Diodes, Inc. data sheet are:

- Reverse standoff voltage: 5 V
- Breakdown voltage at 1 mA: 6.4 V–7.25 V
- Maximum clamp voltage at 43.5 A: 9.2 V

If S1 opens, then the short-circuit current commutates through the TVS and the TVS clamps node AA to 9.2 V, which is below the 15-V rating of the TPS233x.

In a 12-V, hot-swap design, a SMAJ12A is unable to clamp the bus voltage to a safe level. The SMAJ12A characteristics are:

- Reverse standoff voltage: 12 V
- Breakdown voltage at 1 mA: 13.3 V–14.7 V
- Maximum clamp voltage at 20.1 A: 19.9 V

If S1 opens, then the short-circuit current commutates through the TVS, the voltage at node AA rises above 15 V, and the TPS233x is damaged. A TVS with a higher power rating can be used, but the clamp voltage will still exceed 15 V.

The soft clamping characteristic is due to the series resistance of the TVS as shown in Figure 1.

Getting Off the Bus

The traditional hot-swap design shown in Figure 2 exposes several TPS233x pins to the bus voltage transients and relies solely on the TVS for protection. At high bus voltages like 12 V, the TVS lacks the headroom to adequately protect the TPS233x. In this case, R1, R6, and D2 can be added to decouple the TPS233x from the bus as shown in Figure 3.
Figure 3. Decoupling the TPS233x From the Power Bus

The bus voltage is low-pass filtered by R1-C1 before it powers the TPS233x. This filter has a 9.3-kHz cutoff frequency and effectively attenuates the 1-MHz transients found in a typical bus. R1 must not exceed 24.9 Ω; the voltage drop across R1 must be small in order for the TPS233x current-sense amplifier to work correctly. Place capacitor C1 close to pins 8 and 9 of the TPS233x. An X5R or X7R capacitor rated at 25 V or higher is recommended; a 25-V-rated capacitor has less capacitance dropoff at a particular bias voltage than a capacitor that is rated at a lower voltage.

D2 protects the ISET and ISENSE pins by clamping them to 200 mV above IN during a transient.

The 5-μA ISENSE bias-current causes a 1-mV drop across resistor R6 and a corresponding error in the sensed current.

Place the TVS shown in Figure 2 and Figure 3 close to the TPS233x.

The circuits shown in Figure 2 and Figure 3 can be built using a single PCB design. This makes it easy to quickly evaluate both circuits. Replace R1 and R6 with 0-Ω resistors, and remove D2 to convert the circuit in Figure 3 to the circuit in Figure 2.
Drive Safely

The TPS233x ENABLE, PWRGD, and FAULT pins can pull up to the VCC shunt-regulated output in Figure 4. These pins should not pull up to VIN because of the potentially damaging transients at VIN.

![Figure 4. TPS233x Status Outputs and Control Input Can Safely Pull Up to +VCC](image)

Summary

A TVS may not adequately protect the TPS233x from voltage transients. In these cases, additional protection can be gained by decoupling the TPS233x from the power bus. The cost is a few inexpensive components and a slight loss in current-sense accuracy. A single PCB design can be used to evaluate the decoupled and non-decoupled versions of the hot-swap circuit.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>RF/I/F and ZigBee® Solutions</td>
<td>www.ti.com/ifrf</td>
</tr>
</tbody>
</table>

Audio | www.ti.com/audio
Automotive | www.ti.com/automotive
Broadband | www.ti.com/broadband
Digital Control | www.ti.com/digitalcontrol
Medical | www.ti.com/medical
Military | www.ti.com/military
Optical Networking | www.ti.com/opticalnetwork
Security | www.ti.com/security
Telephony | www.ti.com/telephony
Video & Imaging | www.ti.com/video
Wireless | www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated