Designing with the TPS23753 Powered-Device and Power Supply Controller

Eric Wright
HPA/Power Interface

ABSTRACT
The TPS23753 is an IEEE 802.3-2005-compliant powered-device and power supply controller optimized for isolated converter topologies. This application report provides a comprehensive design example for the TPS23753EVM-002 evaluation module (EVM). This EVM is targeted at low-cost, simple, 7-W flyback converter applications.

Contents
1 Introduction ... 2
2 Design Example and Component Selection .. 2
 2.1 Powered-Device Controller .. 4
 2.2 Adapter Input ... 4
 2.3 Frequency and Blanking .. 5
 2.4 Bias Supply ... 6
 2.5 DC-DC Converter Characteristics .. 6
 2.6 Flyback Transformer .. 7
 2.7 Power Train ... 9
 2.8 Feedback Control .. 11
 2.9 Frequency Characteristics ... 13
 2.10 Loop Compensation ... 13
3 PCB Layout Guidelines ... 18
4 PCB EMI Control ... 18
5 Conclusion ... 19
6 References ... 19

List of Figures
1 Generic PD and Flyback Converter Circuit Block Diagram........................ 3
2 Example Primary Current Waveform .. 8
3 Example Secondary Current Waveform ... 10
4 Mathcad Bode Plot (Minimum Input/2-A Output) 16
5 TPS23753EVM-002 Network Analyzer Plot (24-V Input/2-A Output) 16
6 TPS23753EVM-002 Network Analyzer Plot (48-V Input/2.2-A Output) 17

List of Tables
1 TPS23753EVM-002 Electrical Specifications 2
1 Introduction

The TPS23753 supports designs using isolated flyback converter topologies. Benefits include lower voltage operation along with built-in features including:

- Devices optimized for isolated converters
- Programmable frequency with synchronization
- Adjustable leading-edge blanking
- Simplified dc/dc control 100-V ratings
- –40°C to 125°C junction temperature range
- Current and inrush limit
- Thermal protection

2 Design Example and Component Selection

Table 1 outlines the electrical requirements for this design example.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER INTERFACE</td>
<td>Applied to the power pins of connectors J1 or J2</td>
<td>0</td>
<td>–</td>
<td>57</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>Applied to the power pins of connectors J1 or J2</td>
<td>0</td>
<td>–</td>
<td>57</td>
<td>V</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>After start-up</td>
<td>30</td>
<td>–</td>
<td>57</td>
<td>V</td>
</tr>
<tr>
<td>Input UVLO</td>
<td>Rising input voltage</td>
<td>–</td>
<td>–</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Falling input voltage</td>
<td>30</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>DC/DC CONVERTER</td>
<td>20 V ≤ Vin ≤ 57 V, I _LOAD ≤ I _LOAD (max)</td>
<td>3.3</td>
<td></td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>3.3-V output</td>
<td>3.13</td>
<td>3.3</td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>20 V ≤ Vin ≤ 57 V, I _LOAD ≤ I _LOAD (max)</td>
<td></td>
<td>2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>3.3-V output</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>10.8 V ≤ Vin ≤ 13.2 V, I _LOAD ≤ I _LOAD (max)</td>
<td></td>
<td></td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>Output ripple voltage, peak-to-peak</td>
<td>Vin = 44 V, I _LOAD = 2 A</td>
<td>–</td>
<td>65</td>
<td>–</td>
<td>mV</td>
</tr>
<tr>
<td>Efficiency, end-to-end</td>
<td>Vin = 44 V, I _LOAD = 2 A</td>
<td>–</td>
<td>77%</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3-V output</td>
<td>225</td>
<td>–</td>
<td>275</td>
<td>kHz</td>
</tr>
<tr>
<td>Switching frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The equations that follow are associated with the schematic diagram in Figure 1. The reference designators in Figure 1 perform a cross-reference function to both the TPS23753EVM-002EVM and the TPS23753 data sheet (SLVS853).

Figure 1. Generic PD and Flyback Converter Circuit Block Diagram
2.1 **Powered-Device Controller**

2.1.1 **TVS, D1**

D1 is used to protect the powered-device (PD) controller front-end from overvoltage due to line transients, hotplug into 48-V sources, and output faults. A transient suppressor diode, such as the SMAJ58A, must be connected from \(V_{DD} \) to \(V_{SS} \).

2.1.2 **Capacitor, C1**

The IEEE 802.3-2005 standard specifies a \(V_{DD} - V_{SS} \) bypass capacitor whose value is required to be 0.05 \(\mu \text{F} \)–1.2 \(\mu \text{F} \). Typically, a 0.1-\(\mu \text{F}, 100-\text{V}, 10\% \) ceramic capacitor is used.

2.1.3 **Detection Resistor, \(R_{DEN} \)**

The IEEE 802.3-2005 standard specifies a detection signature resistance, \(R_{DEN} \), between 23.75 kΩ and 26.25 kΩ.

\[
R_{DEN} = \frac{23.75 \, \text{kΩ} + 26.25 \, \text{kΩ}}{2} = 25 \, \text{kΩ}
\]

Choose \(R_{DEN} = 24.9 \, \text{kΩ}, 1\% \)

(1)

2.1.4 **Classification Resistor, \(R_{CLS} \)**

Connect a resistor from CLS to \(V_{SS} \) to program the classification current according to the IEEE 802.3-2005 standard. The power assigned must correspond to the maximum average power drawn by the PD during operation. Select \(R_{CLS} \) according to the following table.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>POWER AT PD PI</th>
<th>CLASS CURRENT</th>
<th>RESISTOR (Ω)</th>
<th>MINIMUM PACKAGE SIZE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINIMUM (W)</td>
<td>MAXIMUM (W)</td>
<td>MINIMUM (mA)</td>
<td>MAXIMUM (mA)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.44</td>
<td>12.95</td>
<td>0</td>
<td>4</td>
<td>1270</td>
</tr>
<tr>
<td>1</td>
<td>0.44</td>
<td>3.84</td>
<td>9</td>
<td>12</td>
<td>243</td>
</tr>
<tr>
<td>2</td>
<td>3.84</td>
<td>6.49</td>
<td>17</td>
<td>20</td>
<td>137</td>
</tr>
<tr>
<td>3</td>
<td>6.49</td>
<td>12.95</td>
<td>26</td>
<td>30</td>
<td>90.9</td>
</tr>
<tr>
<td>4</td>
<td>12.95</td>
<td>25.5</td>
<td>36</td>
<td>44</td>
<td>63.4</td>
</tr>
</tbody>
</table>

Because this design example is 7 W, either class 0 or class 3 can be chosen. Because the output loading is not fixed, class 0 and \(R_{CLS} = 1270 \, \Omega \) is chosen.

2.2 **Adapter Input**

The adapter configuration shown in Figure 1 bypasses the PD hotswap MOSFET by applying the adapter voltage directly to the TPS23753 converter section (\(V_{DD1} \) and RTN). Other adapter O-ring configurations are possible and are discussed in application report SLVA306.

2.2.1 **Input Blocking Diode, \(D_A \)**

\(D_A \) should be rated for the reverse voltage required which is typically 80 V–100 V. A Schottky diode rated for the maximum adapter low line input current is preferred to minimize diode power loss. For this example, the MURA120 diode is used (200 V, 1 A, \(V_F = 0.75 \, \text{V} \) maximum, \(V_F = 0.7 \, \text{V} \) nominal at 550 mA).

2.2.2 **APD Pin Divider Network, \(R_{APD1}, R_{APD2} \)**

The APD pin can be used to disable the TPS23753 internal hotswap MOSFET giving the adapter source priority over the PoE source. An active APD pin also disables the internal class regulator and CLS pin.
R_{APD1} and R_{APD2} provide ESD protection, leakage discharge for the adapter ORing diode, and input voltage qualification. The APD divider ratio DR_{APD} must be chosen with consideration given to the APD pin maximum recommended input voltage, class regulator and resistor power dissipation, and adapter disable threshold.

The following example illustrates selection of R_{APD1} and R_{APD2}.

1. To prevent the converter from operating at an excessively low adapter voltage, choose a start-up voltage, V_{START}, approximately 75% of nominal. Assuming that the adapter output is 48 V ± 10%, this provides 15% margin below the minimum adapter operating voltage.

2. Choose V_{START} = 48 × 0.75 = 36 V.

3. Select R_{APD2}, considering power dissipation. Choose R_{APD2} = 3.01 kΩ

4. Choose R_{APD1} = 69.8 kΩ

5. Check the adapter turnon and turnoff voltage.

6. Check the APD pin voltage at maximum adapter input.

7. V_{APD} is less than V_{B}, so is within the recommended maximum.

APD turns the class regulator off when the input voltage is above the threshold. When low-voltage adapters are to be used, the APD pin divider can be chosen with class regulator and class resistor power dissipation in mind. With lower APD divider ratios, caution must be exercised to avoid damage to the APD pin if used with a higher voltage adapter.

2.3 Frequency and Blanking

2.3.1 Frequency Setting Resistor, R_{FRS}

For this design, f_{SW} = 250 kHz

R_{FRS} (kΩ) = \frac{15000}{f_{SW} (kHz)} = \frac{15000}{250} = 60 kΩ

Choose R_{FRS} = 59 kΩ

2.3.2 Blanking Interval, R_{BLNK}

External blanking can be achieved by installing R_{BLNK}. If the internal blanking interval is sufficient, connect the R_{BLNK} pin to RTN. Choose the blanking interval to be a percentage of the switching period.

Choose BL(%) = 2%

R_{BLNK} (kΩ) = \frac{2}{250} \times 10^4 = 80 kΩ

Choose R_{BLNK} = 80.6 kΩ
2.3.3 Internal Control Rail Capacitor, \(C_{VB} \)

\(V_B \) must be bypassed with a 0.1-\(\mu \)F ceramic capacitor to RTN. \(V_B \) is an internal 5-V control rail and must be used to bias the feedback opto-coupler, \(U2 \).

2.4 Bias Supply

2.4.1 Bias Supply Diode, \(D_{VC} \)

\(D_{VC} \) can be a small, general-purpose diode. For this example, BAS16 diode is used (75 V, 150 mA).

2.4.2 Bias Supply Resistor, \(R_{VC} \)

\(R_{VC} \) helps to reduce peak charging from the bias winding. Typical \(R_{VC} \) values range from 0 \(\Omega \) to 100 \(\Omega \).

Choose \(R_{VC} = 49.9 \) \(\Omega \).

2.4.3 Bias Supply Capacitance, \(C_{VC1}, C_{VC2} \)

\(V_C \) must be bypassed with a 0.22-\(\mu \)F minimum ceramic capacitor (\(C_{VC2} \)) to RTN. The value of the bulk \(V_C \) capacitor (\(C_{VC1} \)) affects the converter start-up time as well as shorted output hiccup frequency. \(C_{VC1} \) is charged by the internal \(V_C \) bootstrap current source as \(V_C \) approaches UVLO. \(C_{VC1} \) affects the charge-up time as follows:

\[
C_{VC1} = \frac{I_C \times T_{ST}}{UVLO_1}
\]

\(I_C \approx 3 \sim 4 \) mA, \(T_{ST} \approx 30 \) mS, \(UVLO_1 = 9 \) V

\[
C_{VC1} = \frac{0.0035 \times 0.05}{9} = 11.7 \mu F
\]

Choose \(C_{VC1} = 10 \mu F \)

\[(9) \]

2.5 DC-DC Converter Characteristics

2.5.1 Output

3.3V OutputLoad

\(V_{out_{NOM}} = 3.3 \) V, \(V_{out_{RIPPLE}} = 1.5\% \)

\(P_{out_{MAX}} = 7W \), \(P_{out_{MIN}} = 0W \)

\(I_{out_{MAX}} = 2.15A \), \(I_{out_{MIN}} = 0A \)

12V Bias

\(V_{out_{NOM}} = 12V \), \(V_{out_{RIPPLE}} = 5\% \)

\(P_{out_{MAX}} = 60mW \), \(P_{out_{MIN}} = 0W \)

\(I_{out_{MAX}} = 5mA \), \(I_{out_{MIN}} = 0A \)

\[\text{Eq. (10)} \]

2.5.2 Input

PoE (at PSE Power Interface)

\(V_{pse_{MAX}} = 57V \), \(V_{pse_{MIN}} = 44V \)

\(I_{pse_{MAX}} = 350mA \), \(I_{pse_{MIN}} = 0A \)

Adapter (24V)

\(V_{adp_{NOM}} = 24V \), \(V_{adp_{TOL}} = \pm 10\% \)

\[\text{Eq. (11)} \]

2.5.3 Efficiency Target

\(\eta_{FB} \geq 78\% \)

2.5.4 Maximum Adapter Input Current

\[
I_{adp_{MAX}} = \frac{P_{out_{MAX}}}{V_{adp_{MIN}} \times \eta_{FB}} = \frac{7W}{21.6V \times 0.78} = 415 mA
\]

\[\text{Eq. (12)} \]
2.5.5 Minimum Converter Input Voltage

\[V_{fb_{\text{MIN}}} = V_{adp_{\text{MIN}}} - V_{DA} = 21.6V - 0.7V = 20.9V \]

\[\text{design for } V_{flyback_{\text{MIN}}} = 20V \]

(13)

2.5.6 Duty Cycle

The TPS23753 supports duty cycles up to 80%. Choose a maximum operating duty cycle for the converter that includes plenty of margin.

\[D_{\text{max}_{\text{DESIGN}}} \neq 60\% \]

2.6 Flyback Transformer

2.6.1 Primary Voltage Drops

Estimate the primary element voltage drops assuming that the peak primary input current is twice the maximum adapter low line input current.

\[R_{ds - on} + R_{CS} \approx 1\Omega \]

\[V_{\text{drop}_{\text{PRIMARY}}} = 2 \times I_{\text{adp}_{\text{MAX}}} \times 1\Omega = 0.831V \]

(14)

2.6.2 Secondary and Bias Winding Voltage Drops

\[I_{\text{secondary}} = \frac{V_{\text{flyback}_{\text{MIN}}}}{V_{\text{out}_{\text{MIN}}}} \times 2 \times I_{\text{adp}_{\text{MAX}}} = \frac{20V}{3.15V} \times 2 \times 0.415A = 5.27A \]

\[V_{\text{dropros}_{\text{secondary}}} = 0.4V \]

\[V_{\text{VDC}} = 0.5V \]

\[I_{C} = 5mA \]

\[R_{C} = 50\Omega \]

\[V_{\text{dropros}_{\text{bias}}} = V_{\text{VDC}} + I_{C} \times R_{C} = 0.5V + 0.005 \times 50 = 0.75V \]

(15)

2.6.3 Required Transformer Turns Ratios

The equations yield a maximum turns ratio at \(V_{flyback_{MIN}} \) and \(D_{\text{max}_{\text{DESIGN}}} \)

\[N_{P,S} = \frac{D_{\text{max}_{\text{DESIGN}}}}{1 - D_{\text{max}_{\text{DESIGN}}}} \times \frac{V_{flyback_{MIN}} - V_{\text{drop}_{\text{PRIMARY}}}}{V_{\text{out}_{\text{NOM}}} + V_{\text{drop}_{\text{SECONDARY}}}} = 7.77 \]

\[N_{P,S} = \frac{D_{\text{max}_{\text{DESIGN}}}}{1 - D_{\text{max}_{\text{DESIGN}}}} \times \frac{V_{flyback_{MIN}} - V_{\text{drop}_{\text{PRIMARY}}}}{V_{\text{bias}_{\text{NOM}}} + V_{\text{drop}_{\text{BIAS}}}} = 2.26 \]

(16)

2.6.4 Target Peak Primary Current

For a continuous conduction mode (CCM) flyback converter, a good rule is to choose the primary ripple current to be < 50% of the peak primary current. Doing this yields the following equation.

\[N_{P,S} = 7(N_{P,S} \text{ rounded to integer}) \]

\[I_{\text{peak}} = \frac{4}{3} \times \left(\frac{I_{\text{out}_{\text{MAX}}}}{N_{P,S}} \times \frac{1}{1 - D_{\text{max}_{\text{DESIGN}}}} \right) = 1.036A \]

(17)

2.6.5 Primary Inductance

The following equation yields a minimum primary inductance required to keep the peak current below that in Equation 17.

\[L_{\text{prim}} = \frac{D_{max_{\text{DESIGN}}}}{f_{\text{req}_{\text{NOM}}}} \times \frac{V_{flyback_{MIN}} - V_{\text{drop}_{\text{PRIMARY}}}}{0.5 \times I_{\text{peak}}} = 87.6\,\mu\text{H} \]

(18)
2.6.6 Select the Transformer

Several readily available 7-W choices exist for this PoE transformer. Significant data sheet parameters follow.

- Primary Inductance, $L_P = 155 \, \mu H$
- Primary-to-secondary turns ratio, $N_{PS} = 5.26$
- Primary-to-bias turns ratio, $N_{PB} = 1.5$

2.6.7 Actual Duty Cycle at Voltage Using Selected Transformer

$$D_{max_{\text{ACTUAL}}} = \frac{(V_{out_{\text{nom}}} + V_{drop_{\text{SECONDARY}}}) \times N_{PS}}{(V_{flyback_{\text{MIN}}} - V_{drop_{\text{PRIMARY}}}) + (V_{out_{\text{nom}}} + V_{drop_{\text{SECONDARY}}}) \times N_{PS}} = 50.4\%$$

$$D_{min_{\text{ACTUAL}}} = \frac{(V_{out_{\text{nom}}} + V_{drop_{\text{SECONDARY}}}) \times N_{PS}}{(V_{flyback_{\text{MAX}}} - V_{drop_{\text{PRIMARY}}}) + (V_{out_{\text{nom}}} + V_{drop_{\text{SECONDARY}}}) \times N_{PS}} = 25.7\%$$

$$D_{max_{12V}} = \frac{(V_{out_{\text{nom}}} + V_{drop_{\text{SECONDARY}}}) \times N_{PS}}{(10.1 \, V - V_{drop_{\text{PRIMARY}}}) + (V_{out_{\text{nom}}} + V_{drop_{\text{SECONDARY}}}) \times N_{PS}} = 67.7\%$$

(19)

2.6.8 Calculate Primary Currents

An example of the primary current waveform is shown in Figure 2.

![Figure 2. Example Primary Current Waveform](image)

Low line average DC input current:

$$I_{dcfb_{\text{MAX}}} = \frac{P_{out_{\text{MAX}}}}{V_{flyback_{\text{MIN}}} \times n_{FB}} = 0.45A$$

On-state step current:

$$I_{pri_step} = \frac{I_{dcfb_{\text{MAX}}}}{D_{max_{\text{ACTUAL}}}} = 0.89A$$

Ramp current:

$$\Delta I_{L_{\text{PRIMARY}}} = \frac{V_{flyback_{\text{MIN}}} - V_{drop_{\text{PRIMARY}}}}{L_P} \times \frac{D_{max_{\text{ACTUAL}}}}{freq} = 0.25A$$

Peak current:

$$I_{primary_{\text{PEAK}}} = I_{pri_step} + \frac{\Delta I_{L_{\text{PRIMARY}}}}{2} = 1.0A$$
2.7 **Power Train**

2.7.1 **Primary Switching MOSFET, M1**

Determine drain-to-source voltage rating. The snubber limits the actual voltage excursion.

\[
V_{ds_{\text{MAX}}} = V_{\text{flyback}} + V_{\text{leakage}} + (V_{\text{out}} + V_{\text{drop}}) \times N_{s} = 101V
\]

Choose a MOSFET with a 150-V, drain-to-source rating. A small package device such as SOT-23 is suitable for this power level. Drain current of at least 1.5 A and \(\text{RDS}_{\text{on}}\) of 500 m\(\Omega\) is sufficient. Choose a MOSFET with a fairly low gate charge (10–20 nC) due to the potentially low operating voltage conditions that may be encountered in a shorted output condition. The TPS23753 can operate down to about 6.5 V; so, this requires that the MOSFET adequately switch on during these conditions.

2.7.2 **Current Sense Resistor, \(R_{CS}\)**

From TPS23753 datasheet, \(V_{CS_{\text{MAX}}} = 0.55V\) typical

\[
R_{CS_{\text{MIN}}} = \frac{V_{CS_{\text{MAX}}}}{I_{\text{primary PEAK}}} = 0.55\Omega
\]

Choose \(R_{CS} = 0.56\Omega, 0.25W\)

2.7.3 **Snubber, \(R_{SN}, C_{SN}, D_{SN}\)**

Without a snubber, the stored energy in the leakage inductance rings with the transformer interwinding (\(C_{WDG}\)) and MOSFET output capacitance (\(C_{OSS_M1}\)) at MOSFET turnoff. The transformer leakage inductance, \(L_{LKG}\), may be 2%-3% of the primary inductance and the MOSFET and transformer winding capacitance can be several hundred picofarads.

\[
V_{\text{spike}} = I_{\text{primary PEAK}} \times \sqrt{\frac{L_{LKG}}{C_{WDG} + C_{OSS_M1}}} = 1.0A \times \sqrt{\frac{4 \mu H}{200 pF}} = 141V
\]

We need \(V_{\text{spike}}_{\text{NEW}} \approx 25V\) so \(C_{SN}\) should be \(\approx \left(\frac{V_{\text{spike}}}{V_{\text{spike}}_{\text{NEW}}}\right)^2 \times (C_{WDG} + C_{OSS_M1}) = 6nF\)

Choose \(C_{SN} = 10nF\)

Choose \(R_{SN}\) so that the snubber time constant is much larger (say 200x) than the switching period. Choose \(D_{SN}\) for the input filter; \(L_{IN}, C_{IN1}, C_{IN2}\) required reverse voltage and leakage inductance charging current.

\[
R_{SN} = \frac{200}{\text{freq} \times C_{SN}} = 80 \text{ k}\Omega
\]

Alternatively, an RC snubber from the primary FET drain to RTN can be employed to limit the spike and slow down the turnoff rise time. This may be preferred for an application where reduced conducted emissions are required. The RC combination should be chosen to minimize the effect on efficiency while reducing the spike to an acceptable safe level. Typical values are 80 \(\Omega\), 1/2 W, 330 pF, and 200 V for this application.

2.7.4 **Input filter; \(L_{IN}, C_{IN1}, C_{IN2}\)**

The input capacitance (\(C_{IN1}\) and \(C_{IN2}\)) must furnish the transient switching current. An inductor, \(L_{IN}\), provides another layer of filtering and reduces the requirements on \(C_{IN2}\). \(C_{IN1}\) provides bulk filtering, whereas \(C_{IN2}\) provides switching energy absorption.
Target input ripple voltage, $V_{\text{in\,ripple}} \approx 1V$

$$C_{\text{in\,min}} = \frac{(I_{\text{pri\,step}} - I_{\text{dcfb\,max}}) \times D_{\text{max\,actual}}}{\text{freq} \times V_{\text{in\,ripple}}} = 0.89 \mu F$$

Choose $C_{\text{in\,2}} = 1 \mu F$, X7R ceramic, 100V, 10mΩ ESR at 100 kHz

2ARMS ripple current rating

$$\Delta V_{\text{cin\,2}} = \frac{(I_{\text{pri\,step}} - I_{\text{dcfb\,max}}) \times D_{\text{max\,actual}}}{\text{freq} \times C_{\text{in\,2}}} + I_{\text{pri\,step}} \times \text{ESR}_{\text{cin\,2}} = 0.9V$$

Select a common-type aluminum electrolytic capacitor for $C_{\text{in\,1}}$, and then size the inductor to achieve the additional attenuation of the ripple voltage.

Choose $C_1 = 22 \mu F$, aluminum electrolytic, 100V, 1.3Ω ESR at 100 kHz, 130 mA RMS ripple current rating.

Target $\Delta I_{\text{cin\,1}} \times 0.13A$ so $\Delta V_{\text{cin\,1}} = \Delta I_{\text{cin\,1}} \times \text{ESR}_{\text{cin\,1}} = 170mV$

$$L_{\text{in}} \approx \frac{\Delta V_{\text{cin\,1}} + \Delta V_{\text{cin\,2}}}{I_{\text{pri\,step}} - I_{\text{dcfb\,max}} - \Delta I_{\text{cin\,1}} \times \frac{D_{\text{max\,actual}}}{\text{freq}}} = 5.5 \mu H$$

Choose a 4.7-μH, 1.5 A\text{\,RMS}, 90-mΩ inductor.

2.7.5 Calculate Secondary Currents

An example of the secondary current waveform is shown in Figure 3.

![Figure 3. Example Secondary Current Waveform](image-url)
2.7.6 **Output Filter;** C_{OUT1}, C_{OUT2}

The output capacitance (C_{OUT1} and C_{OUT2}) must furnish the transient load current. C_{OUT1} provides bulk filtering, whereas C_{OUT2} provides switching energy absorption.

Target output ripple voltage, V_{out} _RIPPLE \approx 50mV

\[
C_{out_MIN} = \frac{(I_{sec_step} - I_{out_MAX}) \times (1 - D_{MAX_ACTUAL})}{freq \times V_{out_RIPPLE}} = 90.4 \, \mu F
\]

Choose $C_{OUT2} = 2 \times 47 \, \mu F$, X5R ceramics, 6.3V, 2mΩ ESR at 100+kHz

4ARMS ripple current rating

\[
\Delta V_{out_{COUT2}} = \frac{(I_{sec_step} - I_{out_MAX}) \times (1 - D_{MAX_ACTUAL})}{freq \times C_{OUT2}} + \frac{(I_{sec_step} - I_{out_MAX}) \times ESR_{COUT2}}{freq \times C_{OUT2}} = 51 \, mV
\]

Add $C_{OUT1} = 47 \, \mu F$, aluminum electrolytic, 6.3-V, 1.25-Ω ESR at 100-kHz, 90-mA RMS ripple current rating.

The low-ESR ceramics effectively shunt the ESR of the aluminum electrolytic. The additional ripple attenuation due to the aluminum electrolytic is minimal due to the larger ESR.

2.7.7 **Output Rectifier;** D_S

The output rectifier diode must provide low forward voltage drop at the secondary peak current. Consideration must also be given to a safe operating area during output overload conditions. For this case, the converter goes to a constant output power condition with low-primary and high-secondary duty cycle. D_S must withstand these conditions reliably. Choose D_S to be a MBRS540T3 in a SMC package (40-V reverse voltage, 5-A continuous current max, $V_f = 0.5 \, V$ max at 5 A).

2.7.8 **Thermal Considerations**

Consideration must be given to the power dissipation in M1, R_{CS}, and D_S. Both conduction and switching losses must be considered.

2.8 **Feedback Control**

2.8.1 **Shunt Regulator, U3**

For this 3.3-V application, a low-voltage reference shunt regulator is required. Choose the TLV431A with a 1.24-V, 1% internal reference.

2.8.2 **Output Voltage Setpoint Resistors: R_{FBU}, R_{FBL}**

Choose R_{FBU} based on expected integrator midband gain and zero location. Estimate the integrator zero location to be approximately 1 kHz, integrator zero capacitors are from 1 nF–10 nF, and low integrator gain.
Design Example and Component Selection

\[R_{\text{IZE}} \approx \frac{1}{2 \times \pi \times 4.7 \text{nF} \times 1 \text{kHz}} = 33.9 \Omega \]
\[R_{\text{FBUE}} \approx R_{\text{IZE}} \]
Choose \(R_{\text{FBU}} = 41.2 \Omega \)
\[V_{\text{ref}} = 1.24V \]
\[R_{\text{FBL}} = \frac{V_{\text{ref}} \times R_{\text{FBU}}}{V_{\text{out}_{\text{NOM}}} - V_{\text{ref}}} = 24.8 \Omega \]
Choose \(R_{\text{FBL}} = 24.3 \Omega \)

Choosing \(R_{\text{FBL}} \) a little smaller than calculated ensures an output voltage a bit higher than nominal to compensate for the DC drops from the power supply to the load.

2.8.3 Opto-Isolator, U2 Biasing

Choose the opto-isolator to provide a fairly low but stable current transfer ratio characteristic when the LED is driven with a 1- to 2-mA current bias. Typical parameters for an opto-isolator of this sort are:

\[\text{CTR}^{\text{max}} = 80 \text{–} 160\% , \]
\[\text{CTR}^{\text{2mA}} = 0.7 \times \text{CTR}^{\text{max}} \approx 0.85 \text{ from device data sheet curves} \]
\[V_{\text{ledopto}} \approx 1.1V \text{ at } I_{\text{ledopto}} = 2mA \]

2.8.4 Opto-Isolator LED Bias Current

Start with bias at zero duty cycle (ZDC)
\[V_{\text{ledoptok}} = V_{\text{ref}} + 150mV \]
\[R_{\text{OB}} = \frac{V_{\text{out}_{\text{NOM}}} - V_{\text{ledopto}}}{I_{\text{ledopto}}} = 405\Omega \]
Choose \(R_{\text{OB}} = 402\Omega \)

2.8.5 Opto-Isolator Transistor Bias Current

Start with bias at zero duty cycle (ZDC)
\[\text{TPS23753 } V_{\text{zdc}^{\text{max}}} = 1.7V \]
\[\text{TPS23753 } V_{\text{cs}^{\text{max}}} = 0.55V, V_s = 5V \]
\[V_{\text{ctl}^{\text{max}}} = V_{\text{zdc}^{\text{max}}} + 2 \times V_{\text{cs}^{\text{max}}} \]
\[V_{\text{ctl}_{\text{NOM}}} = \frac{V_{\text{zdc}^{\text{max}}} + V_{\text{ctl}^{\text{max}}}}{2} = 2.25V \]
\[R_{\text{CTL}} = \frac{V_b - V_{\text{zdc}^{\text{max}}}}{I_{\text{ledopto}} \times \text{CTR}^{\text{2mA}}} = 1.94k\Omega \]
Choose \(R_{\text{CTL}} = 2k\Omega \)

2.8.6 Secondary Side Soft Start

Place an RC network on the shunt regulator output for soft start. Typical values are \(R_{\text{SS}} = 10 \Omega \) and \(C_{\text{SS}} = 0.1 \mu F \). A blocking diode, \(D_{\text{SS}} \), isolates the outer loop from \(R_{\text{SS}} \) and \(C_{\text{SS}} \).

2.9 Frequency Characteristics

2.9.1 Modulator-Power Stage (MPS) Gain and Right-Half Plane Zero (RHPZ)

The MPS gain, K_{MPS}, is the ratio of modulator output current to CS pin voltage, V_{CS}. K_{MPS} and RHPZ are derived below in Equation 33.

Gain, $K_{MPS} = \frac{(1 - D_{max_{ACTUAL}}) \times N_{PS}}{R_{CS}} = 4.66 \frac{A}{V}$

Load resistance, $R_{load} = \frac{V_{out_{NOM}}}{P_{out_{MAX}}} = 1.56 \Omega$

Current mode control yields right half plane zero, RHPZ

$$R_{HPZ} = R_{load} \times \frac{[N_{PS}(1 - D_{max_{ACTUAL}})]^2}{2 \times \pi \times D_{max_{ACTUAL}} \times L_p} = 21.6 \text{ kHz}$$ (33)

2.9.2 MPS Current

The MPS current, $I_{MPS}(\omega)$, is the product of K_{MPS} and RHPZ.

$$\omega_{RHPZ} = 2 \times \pi \times R_{HPZ}$$

$$I_{MPS}(\omega) = K_{MPS} \times (1 - \frac{j\omega}{\omega_{RHPZ}})$$ (34)

2.9.3 Output Filter (Plus Load) Frequency Characteristics

The output impedance is simply the parallel combination of the output capacitors (including each capacitor's equivalent series resistance or ESR) and the load.

$$Z_{out}(\omega) = Z_{OUT1}(\omega)||Z_{OUT2}(\omega)||R_{load}$$ (35)

2.9.4 MPS Plus Filter and Load (MPF) Transfer Function

The MPF transfer function is shown in Equation 36

$$\omega_{RHPZ} = 2 \times \pi \times R_{HPZ}$$

$$MPF(\omega) = I_{MPS}(\omega) \times Z_{out}(\omega)$$ (36)

2.10 Loop Compensation

The following discussion relies on the use of a mathematics program like MathCAD™ or Excel™ to perform the calculations. Some iteration is involved, but the end results are close to actual performance.

2.10.1 Choose Desired Loop Crossover Frequency, $F_0 = 5.5 \text{ kHz}$

The inner control loop consists of the opto-isolator and associated components. The outer control loop consists of the integrator. It can be shown that the overall transfer function from V_{OUT} to V_{CTL} is:

$$-OPTO(\omega) \times [INT(\omega) + 1]$$

where OPTO(\omega) is the opto-isolator transfer function and INT(\omega) is the integrator transfer function.
2.10.2 Overall Transfer Function

FB(\(\omega\)) = - MPF(\(\omega\)) \times OPTO(\(\omega\)) \times (INT(\(\omega\))+1)

where FB(\(\omega\)) is the flyback overall transfer function.

Simplified OPTO_s(\(\omega\)) = \(\frac{R_{CTL}}{R_{OB}}\) \times \frac{CTR_{2mA}}{1+j\omega \times \frac{R_{CTL}}{C_{CTL}} \times \frac{1}{K_{CTL}}}

TPS23753 internal CTL divider, \(K_{CTL} = 2\)

Simplified INT_s(\(\omega\)) = \(\frac{1}{j\omega \times \frac{R_{FBU}}{C_{IZ}}}

Modulator/opto transfer function, \(G_{MO}(\omega) = - MPF(\omega) \times OPTO_s(\omega)\)

\[|G_{MO}(2 \times \pi \times F_0)| = |MPF(2 \times \pi \times F_0)| \times |OPTO_s(\omega)|\] (37)

2.10.3 Compensate Opto-Isolator or Inner Loop

Select \(C_{CTL}\) to achieve a gain sufficiently below unity at the crossover frequency. Start by assuming the simple integrator \(INT_s(\omega)\) with no midband gain (\(R_{IZ} = 0\)). Target an initial \(|G_{MO}(2 \times \pi \times F_0)| > 0.5 – 0.8\) to estimate \(C_{CTL}\). \(C_{CTL}\) must be limited to 47 nF or less.

Choose \(|G_{MO}(2 \times \pi \times F_0)| = 0.75\)

\[C_{CTL} = \sqrt{\frac{1 - \left[\frac{R_{CTL}}{R_{OB}} \times \frac{CTR_{2mA}}{K_{CTL}} \times |MPF(2 \times \pi \times F_0)| \right]^2}{2 \times \pi \times F_0 \times \frac{R_{CTL}}{C_{CTL}}} = 50.3\text{nF}}\]

Choose \(C_{CTL} = 47\text{nF}\) (38)

2.10.4 Inner Loop Control Zero Resistor, \(R_{ZCTL}\)

For lower output power and voltage designs, a resistor in series with \(C_{CTL}\) can provide phase boost for stability. Target \(R_{ZCTL} \sim R_{CTL}/10\).

Choose \(R_{ZCTL} = 249\ \Omega\)

2.10.5 Inner Loop Transfer Function

\[OPTO(\omega) = \frac{R_{CTL}}{R_{OB}} \times \frac{CTR_{2mA}}{1+j\omega \times \left(\frac{R_{CTL}}{C_{CTL}} \times \frac{1}{K_{CTL}} + \frac{R_{ZCTL}}{C_{CTL}} \times \frac{1}{K_{CTL}}\right)}\] (39)

2.10.6 Outer Loop Compensation

Now that the inner loop is first-pass compensated, design an integrator with midband gain to yield the desired crossover. First calculate the new \(G_{MO}\) including \(R_{ZCTL}\).

\[|G_{MO}(2 \times \pi \times F_0)| = |MPF(2 \times \pi \times F_0)| \times |OPTO_s(2 \times \pi \times F_0)| = 0.772\] (40)

Solve for the integrator midband gain (\(R_{IZ}/R_{FBU}\)), which causes the overall transfer function to be unity at \(F_0\).

\[\text{INT}_{MB} = \frac{R_{IZ}}{R_{FBU}}\]

\[|G_{MO}(2 \times \pi \times F_0)| \times (\text{INT}_{MB} + 1) = 1\]

\[\text{INT}_{MB} = \frac{R_{IZ}}{R_{FBU}} = \frac{1}{|G_{MO}(2 \times \pi \times F_0)| - 1}\]

\[R_{IZ} = R_{FBU} \times \left[\frac{1}{|G_{MO}(2 \times \pi \times F_0)| - 1}\right] = 12.16 \text{k}\Omega\]

Choose \(R_{IZ} = 12.1 \text{k}\Omega\) (41)
Select the integrator zero capacitor, \(C_{IZ} \), by choosing an integrator zero 4 to 5 times below \(F_0 \). Note that once the bode plot is mathematically generated, some shaping of the response curves can be performed to optimize the desired response.

\[
C_{IZ} = \frac{5}{2 \times \pi \times R_{IZ} \times F_0} = 11.9 \text{ nF}
\]

(42)

Select the integrator pole capacitor, \(C_{IP} \), by choosing an integrator zero 10 times above \(F_0 \).

\[
C_{IP} = \frac{1}{20 \times \pi \times R_{IZ} \times F_0} = 240 \text{ pF}
\]

Choose \(C_{IP} = 100 \text{ pF} \)

(43)

2.10.7 Integrator Transfer Function

\[
\text{INT}(\omega) = \frac{R_{IZ}}{R_{VBU}} \times \frac{1}{1 + \frac{j \omega \times R_{IZ} \times C_{IZ}}{1 + j \omega \times R_{IZ} \times C_{IP}}}
\]

(44)

2.10.8 Stability Check

For loop-stability analysis, break the feedback loop between the output load and the input to the shunt regulator feedback network and inject a noise source. The shunt regulator/integrator shifts phase by 270 degrees (180 due to inversion and 90 due to integrator). So, the output load phase leads the input phase by 90 degrees. Instability occurs as the phase difference approaches 0 degrees (or in-phase input and output signals).

From Mathcad, \(FB(2 \times \pi \times F_0) = 0.790 + 0.612i \)

Phase \(\tan^{-1} \left(\frac{0.612}{0.790} \right) = 37.8^\circ \) or Phase \(\arg(FB(2 \times \pi \times F_0)) \times \frac{180}{\pi} \)

\[20 \times \log(|FB(2 \times \pi \times F_0)|) = -0.1 \text{ dB}\]

The phase margin is inadequate. Increase \(R_{ZCTL} \), then recompute \(R_{IZ} \).

Choose new \(R_{ZCTL} = 402 \Omega \)

New \(|G_{MO}(2 \times \pi \times F_0)| = 0.804 \)

New \(R_{IZ} = R_{VBU} \times \left[\frac{1}{|G_{MO}(2 \times \pi \times F_0)|} - 1 \right] = 10 \text{ k\Omega} \)

Choose \(R_{IZ} = 7.15 \text{ k\Omega} \)

(46)

Recompute the new phase margin.

From Mathcad, \(FB(2 \times \pi \times F_0) = 0.609 + 0.719i \)

Phase \(\tan^{-1} \left(\frac{0.719}{0.609} \right) = 49.8^\circ \)

\[20 \times \log(|FB(2 \times \pi \times F_0)|) = -0.5 \text{ dB}\]

(47)

The new phase margin is now acceptable.

The modeled bode plot is shown in Figure 4 and the modeled crossover is at 5.3 kHz with phase margin of 50 degrees. Figure 5 and Figure 6 show the circuit response using a network analyzer. The actual results correlate closely with the modeled results.
Figure 4. Mathcad Bode Plot (Minimum Input/2-A Output)

Figure 5. TPS23753EVM-002 Network Analyzer Plot (24-V Input/2-A Output)
Figure 6. TPS23753EVM-002 Network Analyzer Plot (48-V Input/2.2-A Output)
3 PCB Layout Guidelines

The layout of the PoE front end must follow power and EMI/ESD best practice guidelines. A basic set of recommendations include:

- Parts placement must be driven by power flow in a point-to-point manner; RJ-45, Ethernet transformer, diode bridges, TVS and 0.1-µF capacitor, and TPS23753 converter input bulk capacitor.
- All leads must be as short as possible with wide power traces and paired signal and return.
- Signals must not cross over one part of the flow to another.
- Spacing consistent with safety standards like IEC60950 must be observed between the 48-V input voltage rails and between the input and an isolated converter output.
- The TPS23753 must be located over split, local ground planes referenced to VSS for the PoE input and to RTN for the converter. Whereas the PoE side may operate without a ground plane, the converter side must have one. Logic ground and power layers must not be present under the Ethernet input or the converter primary side.

The DC/DC converter layout can benefit from basic rules such as:

- Pair signals to reduce emissions and noise, especially the paths that carry high-current pulses which include the power semiconductors and magnetics.
- Minimize trace length of high current, power semiconductors, and magnetic components.
- Where possible, use vertical signal pairing.
- Keep the high-current and high-voltage switching away from low-level sensing circuits including those outside the power supply.
- Pay special attention to spacing around the high-voltage sections of the converter.

4 PCB EMI Control

Refer to Designing an EMI Compliant PoE With Isolated Flyback UNPUBLISHED application report (SLUA469) for detailed EMI recommendations. A short list of recommendations follows.

- Use compact loops for dv/dt and di/dt circuit paths (power loops and gate drives).
- Use minimal, yet thermally adequate, copper areas for heat sinking of components tied to switching nodes (minimize exposed radiating surface).
- Use copper ground planes (possible stitching) and top layer copper floods (surround circuitry with ground floods).
- Minimize the amount of copper area associated with input traces (to minimize radiated pickup).
- Hide copper associated with switching nodes under shielded magnetics where possible.
- Heat sink the “quiet side” of components instead of the “switching side” where possible (like the output side of inductor).
- Use Bob Smith terminations, Bob Smith EFT capacitor, and Bob Smith plane
- Use LC filter at DC/DC input to suppress high-frequency ringing on the switching nodes.
- Control rise times with gate drive resistors and drain snubbers.
- Use an EMI bridge capacitor across isolation boundary (isolated topologies).
- Observe the polarity dot on inductors (embed noisy end).
- Use common-mode inductors or ferrite beads in a common-mode filter fashion on the input.
- Maintain physical separation between input-related circuitry and power circuitry (use ferrite beads as boundary line).
- Balance efficiency vs acceptable noise margin.
- Consider the end-product enclosure and shielding with respect to input signal routing and filtering.
5 Conclusion

This application report outlines the steps to design a simple flyback converter using the TPS23753. The design procedure outlined along with the included layout guidelines allows easy and accurate circuit design using the TPS23753.

6 References

1. TPS23753, IEEE 802.3-2005 PoE Interface and Isolated Converter Controller data sheet (SLVS853)
2. TPS23753EVM-001 Evaluation Module for TPS23753 User’s Guide (SLVU246)
4. Practical Guidelines to Designing an EMI Compliant PoE Powered Device with Non-Isolated DC/DC application report (SLUA454)
5. Designing an EMI Compliant PoE Powered Device with Isolated Flyback application report (SLUA469)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>DSP</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Interface</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Logic</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated