ABSTRACT
This document is provided as a supplement to the DRV8812/13 and DRV8828/29 datasheets. It details the hardware implementation of the DRV8812/13/28/29 and an MSP430F1612 microcontroller in a combination that allows the dual DC motor driver to drive a bipolar stepper motor in microstepping configuration with increased degrees of microstepping.

Contents
1 The Full Step .. 3
2 The Micro Step .. 3
1 Microstepping Indexer .. 5
2 Microcontroller Side Control Signals ... 7
3 Microstepping Engine Algorithm ... 7

List of Figures
1 Full Step... 3
2 Micro Step... 4
3 Embedded Waveform Into Winding Current.. 4
4 Application Block Diagram .. 5
5 Microstepping Indexer .. 6
6 Microstepping Engine Algorithm ... 7
7 Squared Sine Wave With 256 Degrees of Microstepping ... 8
8 Trapezoid Waveshape With 256 Degrees of Microstepping ... 8
9 Triangular Waveshape With 4 Degrees of Microstepping ... 9
10 Top Layer .. 14
11 Bottom Layer .. 15

List of Tables
1 Microstepping Operation .. 6
Introduction

Bipolar stepper motors are often designed to be driven at full steps. However, it is a known fact that when each step is divided into multiple and smaller steps (referred to as micro steps), better motion quality can be observed. The application of microstepping to practically any stepper application allows for other improvements such as:

1. Better torque response
2. Less vibration
3. Less resonance incidence

Any stepper can be microstepped. TI’s DRV8811, DRV8821 will allow users to apply microstepping to bipolar stepper motors with up to 8 degrees of microstepping. The DRV8824 and DRV8825 will go 2 steps further, offering both 16 and 32 degrees of microstepping, as well as 8th, quad and half. But what if the application requires an even finer resolution? What if the application requires resolutions in the order of 64, 128 or even 256 degrees of microstepping?

Thanks to the versatility included within the DRV8812/13 devices, this can be easily achieved by modulating the independent VREF analog inputs. All which needs to be done is to apply an analog waveform to said reference voltage inputs, and the winding current magnitude will be regulated to follow the respective input. Generating this waveform can be accomplished by the utilization of a DAC output such as the ones found on an MSP430 microcontroller. Putting all of this together gives us a series of advantages such as:

1. Degrees of microstepping can be made as large as there is resolution on the DAC block. With a 12 bit DAC, you could have up to 4096 levels of microstepping. Far much more than most applications should require.
2. Any waveform, however intricate, can be encoded into the VREF analog inputs. This could be used to resolve any magnetic non linearity within the stepper motor itself.

In this application note we will detail the mechanisms put in place to achieve high resolution microstepping by utilizing a microcontroller, such as the MSP430F1612, in combination with the DRV8812/13 device. The same concepts would apply if different drivers are utilized. Per example, for larger current drive, two DRV8828/29 devices could be used.
Full Step vs Microstep

1 The Full Step

Stepper motors are brushless motors. In other words, they lack a brush making mechanical contact with a commutator, as housed on the typical brushed DC motor. Because of this, stepper motors must be electronically commutated. The most common way of commutating the rotor into motion is by modulating the magnetic field of each stator electromagnet.

There are two stator electromagnets on any conventional stepper motor, which is why two H Bridges are needed. The DRV8812 offers the capability to drive both of these motor windings. By modulating both PHASE A and PHASE B pins, to obtain a polarization waveform such as the one depicted in Figure 1, the motor will move in full steps.

2 The Micro Step

If full steps are all that the application requires, then Figure 1 is the optimal solution. However, the great majority of applications can certainly benefit from dividing full steps into smaller steps.

Figure 2 shows two full steps on the top and a way to divide each full step into 8 smaller steps. We have chosen a sine wave shape, although in reality this waveform can have any shape the users chooses. The idea behind microsteps is to make the current flowing through the winding different than FULL ON on one direction and FULL ON on the opposite direction. This allows for the rotor to be pushed/pulled in increments rather than full force.
Because the DRV8812 has the capability to regulate winding current, and said current is directly proportional to the VREF input, it is possible to embed the prospective waveform at the current side. Figure 3 shows the result of embedding said waveform into the winding current, which is the concept behind this application note.

A microcontroller, such as the MSP430F1612 and utilizing GPIO outputs, will drive the DRV8812’s PHASE inputs in the alternating fashion we saw on previous figures. However, and at the same time, the VREF pins will be modulated by using the two DAC outputs to superimpose a sine wave crest.

As a result, the motor windings see a full sine wave of current being applied to them. Because the current is segmented in smaller steps, the rotor also moves in smaller steps.
In essence, the combination portrayed in Figure 4 is similar to how a stepper with internal indexer (such as the DRV8811 or DRV8821) operates. A logic block samples a series of inputs and generates control signals to the dual H Bridge device. Typical internal indexer driver devices represent an encased application and cannot be modified. However, by splitting the application into a microcontroller and a driver, more flexibility is obtained.

Figure 4 shows how the MSP430F1612 drives the control signals such as PHASE, ENABLE and VREF. ENABLE and PHASE signals are derived from conventional GPIO configured as outputs, whereas the VREF analog signals are derived from both of MSP430F1612’s DAC outputs. An interrupt subroutine computes the next step and generates the next microstep.

1 Microstepping Indexer

At the heart of our microstep generation engine is a lookup table that houses up to eight waveforms. In reality, the MSP430F1612 has enough space to hold much more than eight tables, but for this application note and demonstration purposes, eight tables seemed enough.

Each one of these lookup tables is 512 steps deep. Which waveform table is selected is a factor of the three WFS bits.
To generate a step, two values are read from the table and loaded into the DAC registers. In order for PHASE A to be 90 degrees out of phase with regards to PHASE B, each table item read is located on addresses 256 steps apart from each other (when on 256 microsteps mode). Whether PHASE A lags or leads B depends on the DIR bit. For Clockwise, we chose PHASE A leads B, while for counter clockwise, PHASE A lags PHASE B was chosen. This is totally arbitrary and either way is perfectly acceptable as long as the motor is wired accordingly.

Every time a STEP is issued, a counter is incremented. This counter becomes a pointer to the lookup table. The counter is incremented by 1 if on the highest resolution setting. In this case, maximum degrees of microstepping is obtained. However, in order to obtain less degrees of microstepping, there is no need to have a smaller look up table as the same large look up table suffices.

In order to obtain lesser degrees of microstepping, the counter is incremented by a larger factor, that must be base 2. Per example, to obtain 256 degrees of microstepping, the incrementing value is 1 and to obtain 128 degrees of microstepping, the incrementing factor is 2. Subsequent multiplications of 2 for the incrementing factor, take the microstepping degrees down to half of what they were before.

The Index Increment is a factor of the USMx bits. With three bits we have up to 8 different combinations. In this case, the indexer can operate with half step, quad step as well as 8, 16, 32, 64, 128, 256 degrees of microstepping, as depicted in Table 1.

Table 1. Microstepping Operation

<table>
<thead>
<tr>
<th>Degrees of Microstepping</th>
<th>Divider Factor (Lookup Table Index Increment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
2 Microcontroller Side Control Signals

ENABLE: Microcontroller timer input configured to capture and interrupt on both edges. Signals the microcontroller whether the DRV8812 H Bridges should be powered up or not. Microcontroller remains powered on low power mode when ENABLE is LO and will operate accordingly when ENABLE is HI.

STEP: Microcontroller timer input configured to capture and interrupt on rising edges. A transition from LO to HI tells the microcontroller to issue a new step. Transitions from HI to LO are ignored, although it is the user’s prerogative to code this so that both transitions generate a step.

DIR: Microcontroller timer input configured to capture and interrupt on both edges. Selects the bipolar motor direction of rotation. LO implies counter clockwise rotation, while HI selects clockwise rotation. This was arbitrarily chosen and can be changed according to preference.

STP_RST: Microcontroller timer input configured to capture and interrupt on both edges. Clears the internal indexer and disables the H Bridge. When STP_RST is made LO, the indexer look up table is returned to pointer 0 and the H Bridge is disabled. When STP_RST returns to HI, the H Bridges are enabled and motion starts from lookup table position 0.

USMx: Microcontroller timer input configured to capture and interrupt on both edges. Selects the 8 possible degrees of microstepping resolution. In this application note, half step, quad step, as well as 8, 16, 32, 64, 128 and 256 degrees of microstepping were coded.

WFSx: Microcontroller interrupt input (GPIO). Waveform Select bits. Select from the eight internal look up tables.

3 Microstepping Engine Algorithm

![Microstepping Engine Algorithm Diagram]

Figure 6. Microstepping Engine Algorithm
On the following pictures, the Channel Legend applies:

- **CH1**: VREF A
- **CH2**: PHASE A Pin
- **CH3**: Winding A Current

Figure 7. Squared Sine Wave With 256 Degrees of Microstepping

Figure 8. Trapezoid Waveshape With 256 Degrees of Microstepping
Figure 9. Triangular Waveshape With 4 Degrees of Microstepping
Figure 10. Top Layer
Figure 11. Bottom Layer
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not authorized for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated TI products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics & Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated