Different Methods to Drive LEDs Using TPS630xx Buck-Boost Converters

Juergen Neuhaeusler

ABSTRACT
This application note describes how to drive LEDs using standard dc-dc converters. The circuit examples used here are all based on devices from the TPS630xx buck-boost converter families. Buck-boost converters offer high flexibility regarding the supported input voltage range or supported battery configuration. The devices can also support a wide variety of LEDs, especially different color LEDs, by using the same circuit optimized for a certain LED forward current.

1 Simple Configuration With Shunt Resistor Used for Voltage Feedback

The basic schematic shown in Figure 1 shows the most simple configuration which can be used. To change the dc-dc converter from operating as a voltage source to operating as a current source, the current is measured and fed back into the control loop. For that, the voltage feedback input is used directly. To measure the current, a shunt resistor in series with the LED is used. For calculating the required resistor value for R1 for a given LED current (I_LED) Equation 1 can be used. V_FB is the feedback voltage of the dc-dc converter. In the case of the TPS630xx devices, it is typically 0.5 V.

\[
R1 = \frac{V_{FB}}{I_{LED}} \tag{1}
\]

Depending on the LED current, the power dissipation can become critical for the resistor. It may be required to use bigger sizes of resistors or multiple resistors in parallel or in series. The power (P1) which must be handled by R1 can be calculated using Equation 2.

\[
P1 = I_{LED} \cdot I_{LED} \cdot R1 \tag{2}
\]
2 Improving the Power Conversion Efficiency

The drawback of the circuit explained in Section 1 is that the power losses in the shunt resistor can lower the efficiency of the circuit significantly. Although the feedback voltage of the TPS630xx devices is already low at 0.5 V, it is still causing significant power losses, especially when dealing with high LED currents. How this can be improved is shown in Figure 2. The shunt resistor for measuring the LED current is R3. It is still in series with the LED. But the way R1 is connected, a bias current into the feedback node is introduced. This bias current causes a voltage drop across R2, which adds to the voltage drop across the shunt resistor R3. Because the feedback voltage is not changed, the required voltage drop across the shunt resistor is lower for a given LED current compared to the solution described in Section 1. How the LED current (I_{LED}) is calculated is shown in Equation 3. V_{FB} is the feedback voltage of the dc-dc converter and V_{LED} is the typical forward voltage of the LED.

$$I_{\text{LED}} = \frac{V_{\text{FB}}}{R3} - \frac{V_{\text{LED}}}{R1+R2} - \frac{V_{\text{LED}} \cdot R2}{R3 \cdot (R1+R2)}$$

Equation 3 shows that the regulated LED current in this circuit depends on the forward voltage of the LED. How much the LED current varies is defined by the forward voltage of the LED and the values of resistors R1 and R2. If the value of R1 is as high as possible and the value of R2 as low as possible, the current variation is at its minimum. The theoretical extreme, when R1 is nonexistent and R2 is shorted, basically is the circuit explained in Section 1, so doing tradeoffs is required. Another benefit of the circuit shown in Figure 2 is the output voltage regulation in case the LED is disconnected. This could be required if the dc-dc converter used does not have built-in output overvoltage protection. In this case, the maximum output voltage can be programmed with resistors R1 and R2 using the equations of the data sheet for calculating the feedback divider of the respective device. R3 has a value which is significantly lower compared to R1 and R2, so it is negligible.

Programming the LED current finally is done by selecting the appropriate value for R3. Equation 4 shows how to calculate the value for R3 and Equation 5 shows how to calculate the losses in R3, P_3.

$$R3 = \frac{R1 \cdot V_{\text{FB}} - R2 \cdot (V_{\text{LED}} - V_{\text{FB}})}{I_{\text{LED}} (R1+R2) + V_{\text{LED}}}$$

$$P3 = I_{\text{LED}} \cdot I_{\text{LED}} \cdot R3$$
3 Improving the LED Current Control Accuracy

To overcome the problems with the LED current changing with the LED forward voltage, resistor R1 can be connected to a fixed reference voltage, for example, \(V_{\text{REF}} \) in Figure 3. This reference voltage just must be higher than the feedback voltage. Together with R1 it feeds in a constant bias current into the feedback node, which generates a constant voltage drop across R2. This voltage adds to the voltage drop across shunt resistor R3. The sum of both voltages is the feedback voltage. The equation for the LED current is shown in Equation 6.

\[
I_{\text{LED}} = V_{\text{FB}} \cdot \frac{R_1 + R_2 + R_3}{R_1 \cdot R_3} - V_{\text{REF}} \cdot \frac{R_2 + R_3}{R_1 \cdot R_3}
\]

Equation 6 also shows that the LED current can be changed by changing the reference voltage \(V_{\text{REF}} \). The output load of this reference voltage basically is defined by the series connection of resistors R1 and R2, which usually are high impedance. So almost any low-power reference voltage source can be used directly, for example a PWM-controlled output of a D/A converter. Because the sensitivity to reference voltage changes can be programmed by selecting appropriate values for R1 and R2, and of course by selecting the reference voltage level itself, it is also an ideal circuit implementation if the LED current must be calibrated. This, for example is very beneficial in applications like projectors, when it is required to make sure that the wavelength of the emitted light is at the correct value.

For calculating the losses in the shunt resistor, Equation 5 can be used.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications. Notwithstanding any applications-related information or support that may be provided by TI, Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designated nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not authorized for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers understand and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio
- www.ti.com/audio

Amplifiers
- amplifier.ti.com

Data Converters
- dataconverter.ti.com

DLP® Products
- www.dlp.com

DSP
- dsp.ti.com

Clocks and Timers
- www.ti.com/clocks

Interface
- interface.ti.com

Logic
- logic.ti.com

Power Mgmt
- power.ti.com

Microcontrollers
- microcontroller.ti.com

RFID
- www.ti-rfid.com

OMAP Mobile Processors
- www.ti.com/omap

Wireless Connectivity
- www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
- www.ti.com/automotive

Communications and Telecom
- www.ti.com/communications

Computers and Peripherals
- www.ti.com/computers

Consumer Electronics
- www.ti.com/consumer-apps

Energy and Lighting
- www.ti.com/energy

Industrial
- www.ti.com/industrial

Medical
- www.ti.com/medical

Security
- www.ti.com/security

Space, Avionics and Defense
- www.ti.com/space-avionics-defense

Video and Imaging
- www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated