
Application Report
SLVA488A–October 2011–Revised January 2014

Intelligent Stepper Motor Driver with DRV8811/18/24/25

Jose Quiñones .. Analog Motor Drives

ABSTRACT
This document is provided as a supplement to the DRV8811/18/21/24/25 data sheets. It details a
technique to improve real time control of an internal indexer bipolar stepper motor driver such as the
DRV8811, DRV8818, DRV8821, DRV8824 or DRV8825 while obtaining programmable acceleration and
deceleration profiles, speed control and position control by the utilization of a conventional MSP430
microcontroller and any of the aforementioned power stages.

Contents
1 Introduction and Problem Statement ... 2
2 Stepper Motor Control High Level Functions .. 3

2.1 STEP Actuation: Acceleration, Speed Control and Deceleration Profiles 3
2.2 Accelerating the Motor .. 4
2.3 Stepper Speed ... 8
2.4 Decelerating the Motor ... 10
2.5 Speed Change .. 10
2.6 Position Control: Number Of Steps .. 11
2.7 Homing the Stepper .. 12

3 I2C Protocol and Communications Engine ... 13
3.1 GPIO CONFIG .. 14
3.2 STEPPER CONFIG .. 14
3.3 GPIO OUT ... 15
3.4 Current Duty Cycle ... 15
3.5 START STEPPER .. 15

4 Application Schematic .. 20

1SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

Digital Signal

Processor or

Microcontroller
Dual H Bridge Power Stage

ENABLE_A

PHASE_A

VREF_A

ENABLE_B

PHASE_B

VREF_B

GPIO

GPIO

DAC

GPIO

GPIO

DAC

L

O

G

I

C
G

L

O

G

I

C
G

OUTA

OUTA

OUTB

OUTB

STEP

DIR

ENABLE

DRV8811

DRV8818

DRV8821

DRV8824

DRV8825

OUTA

OUTB

(A) (B)

USMx

STEP

DIR

ENABLE

USMx

Introduction and Problem Statement www.ti.com

1 Introduction and Problem Statement
Driving a stepper motor can be a daunting task. Whereas, providing a voltage at the terminals of a DC
motor causes immediate rotation, on a stepper motor, careful magnetic field commutation must be applied
in order to obtain the same behavior. In the not so distant past, said electromagnetic commutation was
achieved by coding powerful microprocessors to coordinate the phase and current information
administered into the power stage.

With the advent of high integration on monolithic integrated circuits, it became simpler to take into
hardware all the blocks once generated through code. A stand alone IC could now control even the most
intricate subjects such as phase commutation and microstepping without the need of precious
microcontroller resources.

Figure 1. Stepper Control Logic and Power Stage

Figure 1 shows the level of integration which can be obtained when the code inside of a microcontroller,
and in charge of causing stepper commutation, is concatenated along with the power stage into a single
chip solution. Notice that in both scenarios a series of simple control signals exist. A STEP pulse is used
to generate steps or microsteps; a DIR signal defines the direction of rotation; the ENABLE line
determines whether the power stage is enabled or not; and the User Mode bits are used to select a
degree of microstepping.

Controlling a stepper, however, can still benefit from the usage of a microcontroller. Tasks such as speed
and position control, acceleration and deceleration, homing, etc. still require accuracy and precision which
a microcontroller can easily supply. The question we must ask is: Will the application processing unit be
asked to compute all the parameters related to stepper motion, or will a smaller and more cost economical
microcontroller be used to tackle the tasks at hand?

Using a smaller microcontroller to perform the aforementioned tasks is advantageous if numerous
steppers are to be controlled. In this fashion, the application processor can utilize its real time resources to
properly coordinate application intensive aspects, while the small microcontrollers deal with the intricacies
of controlling the stepper motors.

This application note details an implementation using an MSP430F2132 microcontroller and a
DRV8824/25 device which has an internal indexer bipolar stepper microstepping power stage. Combined,
they form a module capable of receiving commands from a master controller through an I2C bus, and
which will then undertake all the actions to control the stepper motor both in speed and position. In order
to best utilize the available resources, a series of GPIO terminals were added, which will provide extra
functionality to the main processor. Figure 2 shows a block diagram of the proposed implementation.

2 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

MSP430F2132
DRV8811

DRV8818

DRV8821

DRV8824

DRV8828

STEP

DIR

nENABLE

DA

CL

HOME

G
P

IO

ADDR0

ADDR1

I2
C

nSLEEP

OUTA

OUTB

VREF

www.ti.com Stepper Motor Control High Level Functions

Figure 2. Intelligent Stepper Controller Block Diagram

2 Stepper Motor Control High Level Functions

2.1 STEP Actuation: Acceleration, Speed Control and Deceleration Profiles
Stepper motors offer a means to achieve speed control without the usage of closed loop mechanisms
such as shaft encoders or resolvers. On a microstepping internal indexer driver, this open loop control is
obtained by modulating the frequency at the STEP input. Each pulse at the STEP input, becomes a
mechanical step motion at the stepper motor. Hence, it is safe to say that since we know what frequency
we are applying at the STEP input, we then know the actual step rate the stepper motor is moving at. This
will hold true as long as the right parametric values, such as current, voltage and torque, are maintained
within reasonable levels throughout the application’s operation.

Unfortunately, we cannot just apply any frequency or step rate to any given stepper motor. Due to the
mechanisms behind the revolving magnetic field at the stator and the permanent magnet at the rotor, a
stepper motor can only start moving if the requested speed is smaller than a parameter given by the
motor’s manufacturer and referred to as the starting frequency (denominated FS). For example, if the FS
for a particular stepper motor is 300 steps per second (SPS), it will most likely not be possible to start the
motor at a frequency of 400 SPS.

3SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

Time (s)

M
o

to
r

S
p

e
e

d
(S

P
S

)

Desired Speed (SPS)

Starting Speed (SPS)

Stopping Speed (SPS)Acceleration Rate (SPSPS)

Deceleration Rate (SPSPS)

Stepper Motor Control High Level Functions www.ti.com

Since the application may require speed rates larger than the FS, it is then very important to subject the
motor commutation through an acceleration profile which starts at a speed rate lower than its maximum
FS and increases speed accordingly until reaching the desired speed.

Figure 3. Typical Stepper Acceleration and Deceleration Profile

Figure 3 shows a typical acceleration and deceleration profile where:

Starting Speed is a STEP frequency lower than the motor’s rated FS at which the motor will start moving.
Measured in steps per second (SPS), where STEPS refers to full steps.

Acceleration Rate is a factor of how much the STEP frequency will be increased on a per second basis.
Measured in steps per second per second (SPSPS).

Desired Speed is the STEP frequency the application requires the motor to move at. It marks the STEP
frequency at which the acceleration profile concludes. Measured in steps per second.

Deceleration Speed is a factor of how much the STEP frequency will be decreased on a per second
basis. Measured in steps per second per second (SPSPS).

Stopping Speed is the STEP frequency at which the deceleration profile and the motor will be stopped. In
this application note, stopping speed is taken to be the same as the starting speed. Measured in steps per
second.

2.2 Accelerating the Motor
The start stepper command starts by issuing steps at a starting frequency denoted by the StartingSpeed
variable. A timer must be used to generate STEP pulses at such frequency. On this application note,
Timer A0.2 was used to set the STEP signal and Timer A0.0 was used to clear the same signal. The
pulse width is 32 clock pulses wide which translates to 2 µs. Since the DRV8825 requires STEP pulses at
least 1-µs wide, this implementation results in a legal pulse generation.

4 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

void AccelTimeCompute(unsigned int AccelDecelRate)
{
if (AccelDecelRate <= 4000)
{
AccelerationTime = 4000/AccelDecelRate;
AccelerationIncrease = 1;
}

else
{
AccelerationTime = 1;
AccelerationIncrease = AccelDecelRate/4000;
}

tmpAccelerationTime = AccelerationTime;
}

Step Frequency’s Period

Pulse Width

Must be larger than 1 us

T
A

0
C

C
R

2
S

e
ts

T
A

0
C

C
R

0
C

le
a

rs

T
A

0
C

C
R

2
S

e
ts

T
A

0
C

C
R

0
C

le
a

rs

www.ti.com Stepper Motor Control High Level Functions

Figure 4. Timer A0 Used to Generate STEP Pulses

The interrupt subroutine for Timer A0.2 is in charge of programming the Timer A0.0 hardware reset, as
well as programming itself in order to schedule the next step generation.

A second timer function is needed to generate the acceleration portion of the speed control profile. The
microcontroller selected for this application only had two available timers so as will be explained shortly, a
trade off had to be made.

Timer A1.1 was used along with timer A1.0 to generate the PWM output which would be used to generate
an analog to digital converter, by adding an RC filter, to drive the DRV8825’s VREF analog input pin. With
this technique, it is then possible to control stepper current in real time.

Although all timer resources seem to be depleted, there is still an aspect of timer A1 we can utilize. If we
code the PWM generator to count from decimal 0 to decimal 249, we will have 250 time units. At 16 MHz,
each timer unit is equal to 62.5 ns with 250 of them accounting for 15.625 µs. By further dividing this result
by 8, we can get a fairly useful time base of 125 µs, or 4000 timer ticks per second.

What this means is we can increase the stepper speed rate up to 4000 times per second. A simple
mathematical equation can then be used to compute both the acceleration time interval and the
acceleration increment parameter. The code snippet below shows the equations used to compute both
aspects of the acceleration parameter:

Figure 5. Function Computing Time Interval and Acceleration Increase Parameters for Acceleration or
Deceleration Rate

5SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

Init H Bridges and Variables
Timer A0.1 = Start Speed

Start Stepper?

YES

NO

Accel Time
Complete?

YES

Timer A0.1
Count Accel Time Interval

NO

Compute Acceleration Rate
and Acceleration Time

Start Acceleration Engine

Stepper Speed+= Accel
Rate

START

Stepper Speed >=

Desired Speed?

NO

Stepper Speed= Desired Speed
Disable Acceleration Engine

END

Stepper Motor Control High Level Functions www.ti.com

Figure 6 shows the flowchart of the state machine in charge of coordinating the acceleration. As can be
seen, the command to start the motor will configure all the parameters required for motion, including the
call to the AccelTimeCompute function.

Figure 6. Stepper Speed Acceleration Flowchart

The actual speed modification takes place inside the AccelDecel function which gets called from within the
main execution which is in turn enabled within the timer A1.0 interrupt service routine (ISR). It is important
for the AccelDecel function not to be called from within inside the ISR as this impacts real time operation.
Instead, inside the ISR the microcontroller sleep mode is disabled, which allows execution to resume from
the main loop.

6 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

#pragma vector=TIMER1_A0_VECTOR
__interrupt void Timer1_A0(void)
{
TimerA0Count += 1;
if (TimerA0Count == ATBCount)
{
TimerA0Count = 0;
if (tmpAccelerationTime == 0)
{
tmpAccelerationTime = AccelerationTime;
_BIC_SR_IRQ(CPUOFF); // Clear LPM0 - jumps to AccelDecel();
}

tmpAccelerationTime -= 1;
}

}

int main()
{

//ALL INITIALIZATION OCCURS HERE

__bis_SR_register(GIE); // Enable all Interrupts
while (1)
{
_BIS_SR(CPUOFF); // Enter LPM0
AccelDecel();
}

}

www.ti.com Stepper Motor Control High Level Functions

Figure 7. Main Function Calls the AccelDecel Code Whenever Code Inside of an ISR Removes the Micro
from Sleep Mode

Figure 8. Timer A1.0 ISR Disables Sleep Mode Once an Acceleration Tick is to be Executed

7SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

void AccelDecel(void)
{

switch (AccelerationState)
{
case (NOACC):
break;

case (ACCEL):
ActualStepperSpeed += AccelerationIncrease;
if (ActualStepperSpeed >= DesiredStepperSpeed)
{
ActualStepperSpeed = DesiredStepperSpeed;
AccelerationState = NOACC;
TA1CCTL0 &= ~CCIE; //DISABLE 250 us coordinator interrupt on TA1.0

}
SpeedCompute(ActualStepperSpeed);

break;
case (DECEL):
ActualStepperSpeed -= AccelerationIncrease;
if (ActualStepperSpeed <= DesiredStepperSpeed)
{
ActualStepperSpeed = DesiredStepperSpeed;
AccelerationState = NOACC;
TA1CCTL0 &= ~CCIE; //DISABLE 250 us coordinator interrupt on TA1.0

}
SpeedCompute(ActualStepperSpeed);

break;
case (STOP):
ActualStepperSpeed -= AccelerationIncrease;
if (ActualStepperSpeed <= StartStepperSpeed)
{
ActualStepperSpeed = StartStepperSpeed;
AccelerationState = NOACC;
TA1CCTL0 &= ~CCIE; //DISABLE 250 us coordinator interrupt on TA1.0
ExecutedSteps = NumberOfSteps - 1;

}
SpeedCompute(ActualStepperSpeed);
break;

}
}

Stepper Motor Control High Level Functions www.ti.com

Figure 9. AccelDecel Function is State Machine Code in Charge of Modifying Stepper Speed According to
Programmed Acceleration or Deceleration Profile

2.3 Stepper Speed
Stepper speed is carefully controlled by using Timer A1.0 and A1.2 as detailed previously. How the timer
is being clocked is important to understand, as the 16- bit timer by itself is not capable of reproducing all
the possible speeds applications around this topology may try to run at. For example, while the Timer A1
is being clocked at 16 MHz, fast stepping rates are easily obtained, while slow speeds cannot be
generated.

8 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

bool SpeedCompute(unsigned int MotorSpeedInHz)
{

if (MotorSpeedInHz < 31)
{

return false;
}
else if (MotorSpeedInHz < 61)
{

ClockConfigure(8);
StepperSpeedTMR = 2000000 / MotorSpeedInHz;
return true;

}
else if (MotorSpeedInHz < 123)
{

ClockConfigure(4);
StepperSpeedTMR = 4000000 / MotorSpeedInHz;
return true;

}
else if (MotorSpeedInHz < 245)
{

ClockConfigure(2);
StepperSpeedTMR = 8000000 / MotorSpeedInHz;
return true;

}
else
{

ClockConfigure(1);
StepperSpeedTMR = 16000000 / MotorSpeedInHz;
return true;

}
}

www.ti.com Stepper Motor Control High Level Functions

As a result, it is imperative to modulate the clock speed by subdividing it. Luckily Timer A has a series of
dividing factors which allow the timer clocking speed to be subdivided from 16 MHz down to as slow as 2
MHz.

The equation to compute how many clock cycles are needed to reproduce a particular stepping rate is:
Clock Cycles = TIMER CLOCK FREQUENCY / STEP_RATE in Hz (1)

A quick analysis on the results provided by the previous equation showed the stepping rate segregations
on a per clock cycle count basis. If for a given timer clock frequency the resulting number of clock cycles
was larger than 65535 then a further subdivision factor would be needed to reduce the clock count from
saturating the timer register.

The function SpeedCompute is in charge of transforming a stepping rate in Hz into clock count.
Depending on the speed, the timing source for Timer A1 is sub divided to slow down its incremental rate.
If the requested stepping rate is less than 31, the function returns false in which case no rate is generated.

Although it may be desirable to obtain stepping rates lower than 31 full steps, this can still be achieved by
utilizing a faster speed and configuring the DRV8824/25 device to operate in 32 degrees of microstepping.
For example, if the programmed DesiredSpeed is 32 SPS, and the DRV8824/25 is configured to operate
in 32 degrees of microstepping, the stepper will move 1 full step per second.

Figure 10. SpeedCompute Transform the Stepping Rate in Hz into a Clock Count Timer A1.1 - Can Use to
Generate Accurate Timing Information

9SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

void ClockConfigure(char Divider)
{
int tempTA0CTL;
tempTA0CTL = TA0CTL;
switch (Divider)
{
case 1:
tempTA0CTL &= ~(BIT7 + BIT6);
break;

case 2:
tempTA0CTL &= ~(BIT7 + BIT6);
tempTA0CTL |= TA0_ID_DIV2;
break;

case 4:
tempTA0CTL &= ~(BIT7 + BIT6);
tempTA0CTL |= TA0_ID_DIV4;
break;

case 8:
tempTA0CTL &= ~(BIT7 + BIT6);
tempTA0CTL |= TA0_ID_DIV8;
break;
}
TA0CTL = tempTA0CTL;

}

Stepper Motor Control High Level Functions www.ti.com

Figure 11. Function ClockConfigure is Called Within the SpeedCompute Function to Modify the Divider
Affecting Timer A1 Clock Speed

The functions SpeedCompute and ClockConfigure are called to set the StartSpeed, to set the new stepper
speed on a per acceleration click occurrence and then when the DesiredSpeed is met. Once the
programmed DesiredSpeed target is reached the stepper motor maintains said speed until a deceleration
profile is commanded.

2.4 Decelerating the Motor
The concept of a deceleration profile the motor is virtually identical to the acceleration profile
implementation except that instead of increasing stepper speed, speed is decreased.

There are two instances in which a deceleration profile may be employed: during SpeedUpdate or during
StepperStop commands. In this implementation, the stepper deceleration profile is finished either when
the start speed is reached or when the programmed number of steps is executed.

Also, it was chosen for the deceleration rate to hold a different memory location such that a non symmetric
acceleration/deceleration profile, such as the one portrayed in Figure 3, could be employed.

The SpeedCompute and ClockConfigure are used in the same fashion as they were used during the
acceleration portion of the motion control profile. However, the state machine, or the AccelDecel function,
is configured to execute the DECEL portion of code.

2.5 Speed Change
During run time, it is possible to change the speed and incur in further acceleration or deceleration as
deemed by the application. When the command SpeedUpdate is issued, the firmware checks to see
whether the new DesiredSpeed is larger or smaller than the ActualStepperSpeed. The result of this
operation configures the Acceleration Deceleration engine accordingly.

10 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

www.ti.com Stepper Motor Control High Level Functions

2.6 Position Control: Number Of Steps
The closed loop capabilities of a stepper are not limited to accurately controlling the speed. Since in
essence the controller is counting the very same steps which are being generated, knowledge of step
position is continuously being updated. Every time a step is executed, the variable StepPosition is updated
according to step rotation direction. For example, if the motor is rotating clockwise (DIR = HI), the
StepPosition variable is incremented, whereas if the motor is rotating counterclockwise (DIR = LO), then
the StepPosition variable is decremented.

NOTE: The notions of motor rotation as clockwise or counterclockwise are directly dependent to
how the motor was wired and the motor itself.

The variable StepPosition can be read in real time to obtain information as to where the motor is at any
given point in time.

On this application note, however, the controller is always operating in Position Control mode. The
variable NumberOfSteps is programmed to hold the entire number of steps which will be executed. Since
this is a 32-bit variable, the total number of steps could be a significantly large number, in which case the
motor would in essence be operating in free running mode. However, if the NumberOfSteps count is
small, then the motor will stop once the total NumbeOfSteps have been executed.

The previous mechanism is achieved by counting how many steps have been executed and comparing
this number to the NumberOfSteps command. This is taken care of on the Timer A0.2 ISR as shown in
Figure 12.

Notice this ISR is in charge of a few tasks we have described earlier and which are of crucial importance
to generating accurate stepping information. These tasks are:
1. Generation of the STEP pulse by configuring when the STEP clear takes place. Timer A0.0 is in

charge of returning the STEP signal to LO.
2. Configuring the TIMERA0.2 to generate the next step according to the current step rate, or

StepperSpeedTMR, which is the timer equivalent of the current rate in Hz.
3. Determining whether the current generated step is the last step to execute. This happens when

ExecutedSteps is equal to NumberOfSteps.
4. If the current generated step is equal to StepsToStop value, then the engine is commanded to start a

deceleration profile.
5. Update StepPosition according to motor direction.

11SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

#pragma vector=TIMER0_A1_VECTOR
__interrupt void Timer0_A1(void)
{

switch (TA0IV)
{
case TA0CCR1_CCIFG_SET:
break;
case TA0CCR2_CCIFG_SET:

TA0CCR0 = TA0CCR2 + StepPulseWidth; //2 us at 16 MHz
TA0CCR2 += StepperSpeedTMR;

ExecutedSteps += 1;

if (ExecutedSteps == NumberOfSteps)
{
TA0CCTL2 &= ~(CCIE + BIT5 + BIT6 + BIT7); //Disable Pulse Generation
}

else if (ExecutedSteps == StepsToStop)
{
AccelTimeCompute(DecelerationRate);
AccelerationState = STOP;
TA1CCTL0 |= CCIE; //ENABLE 250 us coordinator interrupt on TA1.0
}

if (P3IN && DIR)
{
StepPosition += 1;
}

else
{
StepPosition -=1;
}

ReadTable[0] = (StepPosition & 0xFF00) >> 8;
ReadTable[1] = StepPosition & 0xFF;
break;

case TA0IFG_SET:
break;
}

}

Stepper Motor Control High Level Functions www.ti.com

Figure 12. Timer A0.2 ISR

2.7 Homing the Stepper
The concept of preserving stepper position is in essence flawed if we do not know the system’s start
position. This is true for any motor system in which the closed loop feedback is relative, versus absolute.
As a result, it is important we start counting our steps from a known position. Said position is often
referred to as HOME.

The application note incorporates a HOME sensor input which is flexible enough to accommodate both
sensor polarities (e.g. asserted HI or asserted LO). A typical HOME sensor implementation is to have an
optical sensor and a flag at the stepper motor shaft. When the flag meets the optical sensor slit, then the
stepper motor stops and this position is from now on referred to as HOME. Internally, the controller clears
the StepPosition variable.

12 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

#pragma vector=PORT1_VECTOR
__interrupt void PORT1_Change(void)
{
if (P1IFG && HOMEIN)
{
P1IE = 0;
P1IFG = 0;
TA0CCTL2 &= ~(CCIE + BIT5 + BIT6 + BIT7);
StepPosition = 0;

}
}

www.ti.com I2C Protocol and Communications Engine

Since the motor can be started at any given position, the HOME sensor could be found to be at either
state. Hence, initially, the state is to be considered unknown. The typical homing implementation calls for
a transition from HI to LO or a transition from LO to HI as chosen by the application.

In order to easily capture the chosen transition, the HOME sensor was allocated to a GPIO pin with a Pin
On Change Interrupt. Since the pin can be configured to raise the ISR flag either with a rising or a falling
edge, we can capture on either edge. Whereas the typical polling function would require some sort of a
state machine to filter out the wrong transition, this hardware interrupt works exceptionally well, rendering
the amount of code to be considerably tiny.Figure 13 shows the ISR for the PORT1 Pin On Change
Interrupt vector. The reader will notice this code is in charge of clearing the StepPosition variable, as well
as stopping the motor.

Figure 13. Port 1 Pin On Change Interrupt Service Routine

3 I2C Protocol and Communications Engine
In order to program the device parameters and the stepper motion engine profiles, an I2C protocol was
chosen. The way it was designed, up to four controllers can be cascaded with only two communication
lines and two address selector lines.

The I2C protocol is the typical three byte packet where the first byte is the slave address, the second byte
is the register address and the third byte is the data. There are 21 possible address register which can be
accessed.

13SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

N/A

Bit 7 Bit 0

ENABLE MODE2 MODE1 MODE0 N/A N/A DIR

GPIO DIR 7

Bit 7 Bit 0

GPIO DIR 6 GPIO DIR 5 GPIO DIR 4 GPIO DIR 3 GPIO DIR 2 GPIO DIR 1 GPIO DIR 0

Number Of Steps

Number Of Steps

Number Of Steps1

Number Of Steps0

StepsToStop

StepsToStop

StepsToStop1

StepsToStop0

StartSpeed1

StartSpeed0

Accel1

Accel0

DesiredSpeed1

DesiredSpeed0

Decel1

Decel0

GPIO CONFIG

Stepper Config

GPIO OUT

Current Duty Cycle

Start Stepper

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

0x11

0x12

0x13

0x14

Index PARAMETER TABLE

I2C Protocol and Communications Engine www.ti.com

Figure 14. Parameters Table

The variables residing on addresses 0x00 to 0x0F have been discussed on previous sections. The other
addresses are a combination of parameters as well as actions.

3.1 GPIO CONFIG
Defines the GPIO direction, for the 8 GPIO pins 0 to 7, where a configuration of 0 denotes an input and a
configuration of 1 denotes an output.

3.2 STEPPER CONFIG
Configures control signals for the stepper power stage. These register bits are directly mapped to the
Power Stage hardware pins, so changing the state of any of these bits immediately changes the
respective pin at the power stage input.

14 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

START ACCEL

START STEPPER

STOP STEPPER

CHANGE SPEED

HOME HI

HOME LO

0x00

0x01

0x02

0x03

0x04

0x05

OPCODE START STEPPER

GPIO 7

Bit 7 Bit 0

GPIO 6 GPIO 5 GPIO 4 GPIO 3 GPIO 2 GPIO 1 GPIO 0

www.ti.com I2C Protocol and Communications Engine

3.3 GPIO OUT
Those GPIO bits which were configured as outputs are configured when writing to this address. Note that
writing to this address is equivalent to writing to the MSP430 PxOUT register so only bits which are
configured to be outputs on their respective PxDIR register, will react accordingly. Those pins which are
configured as inputs will still behave as inputs.

3.4 Current Duty Cycle
A register accepting a number from 0 to 249 which then becomes PWM output duty cycle. The current
code does not check whether the written is equal or less than 249. Any number larger than 249 will yield a
100% duty cycle PWM.

3.5 START STEPPER
This address is more a command than an actual register. A switch case statement decodes the data byte
and an action is executed. Possible actions are:

Where:
START ACCEL starts the stepper motor through at the StartSpeed and ramps up until reaching
DesiredSpeed. If no other command is received, motor stops once the NumberOfSteps have been
executed.
START STEPPER starts the stepper at the StartSpeed. No acceleration occurs. If no other command
is received, motor stops once the NumberOfSteps have been executed.
STOP STEPPER stops the stepper while ramping down through the deceleration profile. Motor stops
as soon as the StartSpeed is reached or the NumberOfSteps have been executed.
CHANGE SPEED accelerates or decelerates the stepper depending on whether the actual speed is
larger or lesser than the new DesiredSpeed. For this command to work, a new DesiredSpeed must be
written while the motor is running.
HOME HI starts the motor at the StartSpeed and runs until a transition to HI is observed on the HOME
sensor input, or when the NumberOfSteps have been executed.
HOME LO starts the motor at the StartSpeed and runs until a transition to LO is observed on the
HOME sensor input, or when the NumberOfSteps have been executed.

The Start Stepper command will configure the stepping engine parameters such as NumberOfSteps,
StepsToStop, StartStepperSpeed, DesiredStepperSpeed, AccelerationRate and DecelerationRate. It will
then decode the action parameter and start the stepper motor according to the received command. The
I2C communications are handled by the USCI RX and TX vector interrupts.

15SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

#pragma vector=USCIAB0TX_VECTOR //UCA_TRANSMIT on UART/SPI;
UCB_RECEIVE, UCB_TRANSMIT on I2C
__interrupt void USCI_AB0_Transmit(void)
{

if (UCB0CTL1 & UCTR)
{
UCB0CTL1 &= ~UCTR;
IFG2 &= ~UCB0TXIFG;

}
else
{
SerialBuffer[SerialPointer] = UCB0RXBUF;
SerialPointer += 1;
if (SerialPointer == SERIAL_BUFFER_LENGTH)
{
SerialPointer = 0;
ParametersTable[ADDRESS] = PARAMETER;

switch(ADDRESS)
{
case GPIO_CONFIG:

char tempOut;
P1DIR = PARAMETER & 0xC0; //Use 2 MSB's to configure the

GPIO Direction on pins P1.7 and P1.6
P2DIR = PARAMETER & 0x3F; //Use 6 LSB's to configure the

GPIO direction on pins P2.0 to P2.5
case STEPPER_CONFIG_ADDR:
tempOut = P3OUT;
tempOut &= ~(nENABLE + MODE0 + MODE1 + MODE2 + DIR);
tempOut |= PARAMETER;
P3OUT = tempOut; break;

case GPIO_OUT_ADDR:
P2OUT = PARAMETER;
tempOut = P1OUT;
tempOut &= ~(BIT7 + BIT6);
tempOut |= (PARAMETER & 0xC0);
P1OUT = tempOut;
break;

case CURRENT_DC_ADDR:
TA1CCR1 = PARAMETER;
break;

I2C Protocol and Communications Engine www.ti.com

16 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

case START_STEPPER_ADDR:
NumberOfSteps = (ParametersTable[NUMBER_OF_STEPS3_ADDR] << 8) +

(ParametersTable[NUMBER_OF_STEPS2_ADDR]);
NumberOfSteps *= 65536;
NumberOfSteps += (ParametersTable[NUMBER_OF_STEPS1_ADDR] << 8) +

ParametersTable[NUMBER_OF_STEPS0_ADDR];
ExecutedSteps = 0;

StepsToStop = (ParametersTable[STEPS_TO_STOP3_ADDR] << 8) +
(ParametersTable[STEPS_TO_STOP2_ADDR]);

StepsToStop *= 65536;
StepsToStop += (ParametersTable[STEPS_TO_STOP1_ADDR] << 8) +

ParametersTable[STEPS_TO_STOP0_ADDR];

StartStepperSpeed = (ParametersTable[START_SPEED1_ADDR] << 8) +
ParametersTable[START_SPEED0_ADDR];

DesiredStepperSpeed = (ParametersTable[DESIRED_SPEED1_ADDR] << 8) +
ParametersTable[DESIRED_SPEED0_ADDR];

AccelerationRate = (ParametersTable[ACCEL1_ADDR] << 8) +
ParametersTable[ACCEL0_ADDR];

DecelerationRate = (ParametersTable[DECEL1_ADDR] << 8) +
ParametersTable[DECEL0_ADDR];

www.ti.com I2C Protocol and Communications Engine

17SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

switch (PARAMETER)
{
case START_ACCEL: // Start stepper motor at Start speed and until

reaching desired speed
AccelerationState = ACCEL;
ActualStepperSpeed = StartStepperSpeed;
AccelTimeCompute(AccelerationRate);
TA1CCTL0 |= CCIE; //ENABLE 250 us coordinator interrupt on TA1.0
//WDTCTL = 0x5A00 + WDTTMSEL + WDTSSEL + BIT1 + BIT0;
break;

case START_STEPPER: // Start stepper motor at start speed. Run at this
rate.

AccelerationState = NOACC;
ActualStepperSpeed = StartStepperSpeed;
break;

case STOP_STEPPER: // Stop motor from current speed, through a
deceleration profile and until reaching Start Speed. Then stop and disable stepping
engine

AccelTimeCompute(DecelerationRate);
AccelerationState = STOP;
TA1CCTL0 |= CCIE; //ENABLE 250 us coordinator interrupt on TA1.0
break;

case CHANGE_SPEED: // Modify current speed up or down to Desired
Speed.

if (DesiredStepperSpeed >= ActualStepperSpeed)
{
AccelTimeCompute(AccelerationRate);
AccelerationState = ACCEL;
TA1CCTL0 |= CCIE; //ENABLE 250 us coordinator interrupt on TA1.0
}

else
{
AccelTimeCompute(DecelerationRate);
AccelerationState = DECEL;
TA1CCTL0 |= CCIE; //ENABLE 250 us coordinator interrupt on TA1.0
//WDTCTL = 0x5A00 + WDTTMSEL + WDTSSEL + BIT1 + BIT0;
}

break;

I2C Protocol and Communications Engine www.ti.com

18 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

case HOME_HI: // Move Stepper at Start Speed until the Home
Sensor becomes HI. Go through LO if already at HI

AccelerationState = NOACC;
ActualStepperSpeed = StartStepperSpeed;
P1IFG &= ~HOMEIN;
P1IES |= HOMEIN;
P1IE |= HOMEIN;
break;

case HOME_LO: // Move Stepper at Start Speed until the Home
Sensor becomes LO. Go through HI if already at LO

AccelerationState = NOACC;
ActualStepperSpeed = StartStepperSpeed;
P1IFG &= ~HOMEIN;
P1IES &= ~HOMEIN;
P1IE |= HOMEIN;
break;

}

if (SpeedCompute(ActualStepperSpeed))
{
P3OUT &= ~(nENABLE);
P1OUT |= NSLEEP;

TA0CCR2 += StepperSpeedTMR;
TA0CCR0 = TACCR2 + StepPulseWidth; //2 us at 16 MHz
TA0CCTL2 &= ~CCIFG;
TA0CCTL2 |= (CCIE + TA0_OUTMOD2_CONF);

}
break;

}
}

}
}

www.ti.com I2C Protocol and Communications Engine

19SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

Application Schematic www.ti.com

4 Application Schematic
The following page contains the MSP430 and DRV8811/18/24/25 combo board schematic.

20 Intelligent Stepper Motor Driver with DRV8811/18/24/25 SLVA488A–October 2011–Revised January 2014
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

1 2
3 4
5 6
7 8
9 10
11 12
13 14

J1

JTAG

GND

V3p3

SBWTCK

V3p3

GND

0.1uF
C1

nSLEEP

STEP

1

TP1
VM

VM

1

TP2
GND

GND

1

TP3
V3P3

0.1uFC5

1
2
3
4

J5

Stepper

AOUT1
AOUT2

C3 0.01uF CP1
CP2

0.1uFC6

VCP
0.1uFC4

VM

AOUT1

AOUT2
ISENA

DECAY
nFAULT
nSLEEP

V3P3OUT

BOUT1

BOUT2
ISENB DIR

nENABLE
STEP

MD0
MD1
MD2

.47uFC7

1
2

J2

VM

1
2
3
4

J4

Stepper

AOUT1
AOUT2

3.3KR7

.2R6

.2R5

100uF

C2
3.3K

R1

D1

VM

VM

BOUT1
BOUT2

BOUT1
BOUT2

G
N

D
0

OUT
1

FB
2

NC
3

GND
4

EN
5

NC
6

NC
7

IN
8

U3

TPS79801

10uF

C9

VM

61.9K

R11

39K

R12

V3p3

TST/SBW
1

DVCC
2

P2.5
3

DVSS
4

P2.7/ XOUT
5

P2.6/ XIN
6

RST
7

P2.0
8

P2.1
9

P2.2
10

P3.0
11

P3.1
12

P3.2
13

P3.3
14

P3.4/TX
15

P3.5/RX
16

P3.6/TA1.0
17

P3.7/TA1.1
18

P2.3
19

P2.4
20

P1.0/TACLK
21

P1.1/TA0.0
22

P1.2/TA0.1
23

P1.3/TA0.2
24

P1.4/TCK
25

P1.5/TMS
26

P1.6TCLK
27

P1.7/TDI
28

U1

MSP430F2132

CP1
1

CP2
2

VCP
3

VMA
4

AOUT1
5

ISENA
6

AOUT2
7

BOUT2
8

ISENB
9

BOUT1
10

VMB
11

VREF
12

VREF
13

GND
14

V3P3OUT
15

nRESET
16

nSLEEP
17

nFAULT
18

DECAY
19

DIR
20

nENABLE
21

STEP
22

NC
23

MODE0
24

MODE1
25

MODE2
26

nHOME
27

GND
28

G
N

D
0

U2

DRV8825

MD0 MD1
MD2

GPIO0
GPIO1
GPIO2 GPIO3

GPIO4

GPIO5

DIR
SDA
SCL

VREF_PWM
nENABLE

HOME
SBW_TDOI

SBWTCK

SBW_TDOI

GPIO7
GPIO6

330
R2

V3p3

V3p3

1
2

J6

I2C

SDA
SCL

1
2
3
4
5
6
7
8
9
10

J9

GPIO

V3p3

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

VREF_PWM

0.01uF

C8

5.1KR8

3.3KR3

1
2
3

J3

HOME

V3p3

HOME

ADR0
ADR1

12
Y1

1
2

JMP1

ADR0

ADR0 ADR1

3.3K
R9

V3p3

1
2

JMP2

ADR0

3.3K
R10

V3p3

3.3KR4

nFAULT

TL1

DRV8825Combo

3.3K

R13

www.ti.com Application Schematic

21SLVA488A–October 2011–Revised January 2014 Intelligent Stepper Motor Driver with DRV8811/18/24/25
Submit Documentation Feedback

Copyright © 2011–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA488A

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Intelligent Stepper Motor Driver with DRV8811/18/24/25
	1 Introduction and Problem Statement
	2 Stepper Motor Control High Level Functions
	2.1 STEP Actuation: Acceleration, Speed Control and Deceleration Profiles
	2.2 Accelerating the Motor
	2.3 Stepper Speed
	2.4 Decelerating the Motor
	2.5 Speed Change
	2.6 Position Control: Number Of Steps
	2.7 Homing the Stepper

	3 I2C Protocol and Communications Engine
	3.1 GPIO CONFIG
	3.2 STEPPER CONFIG
	3.3 GPIO OUT
	3.4 Current Duty Cycle
	3.5 START STEPPER

	4 Application Schematic

