ABSTRACT

Some applications require negative output voltage to be generated from a positive input voltage. This application report presents a solution for creating an inverting power supply using the TPS54061 synchronous buck converter in an inverting buck-boost topology. This device features a wide input range of 60V and synchronous rectifier diode emulation for improved efficiency at light loads.

The solution schematic is provided along with component selection criteria and equations to scale the design as needed. Also included are captured waveforms from the TPS54061 design example. This design procedure is also applicable to other synchronous step down peak current mode control regulators.

Contents

1 Description of Application .. 3
2 Design Considerations .. 4
3 Design Procedure ... 5
 3.1 Schematic ... 5
 3.2 Maximum Input Voltage and Output Voltage ... 5
 3.3 Minimum Input Voltage ... 5
 3.4 Duty Cycle ... 5
 3.5 Output Current .. 6
 3.6 Operating Frequency ... 6
 3.7 Inductor .. 7
 3.8 Output Capacitor ... 7
 3.9 Power Dissipation in Package ... 7
 3.10 Input Capacitors .. 8
 3.11 Slow-Start Time ... 8
 3.12 Frequency Response of the Inverting Regulator .. 8
 3.13 Synchronizing to an External Clock and Adjustable UVLO 9
4 Evaluation Results .. 9
5 References .. 12

List of Figures

1 Buck Topology ... 3
2 Inverting Buck-Boost Topology ... 4
3 Inverting Power Supply Schematic ... 5
4 Efficiency .. 9
5 Light Load Efficiency ... 9
6 Loop Response ... 10
7 Load Regulation ... 10
8 Line Regulation .. 10
9 Startup Waveform with 100 mA Load .. 10
10 Shutdown Waveform with 100 mA Load ... 10
11 CCM Input Voltage Ripple .. 10
12 DCM Input Voltage Ripple ... 11
13 Pulse Skipping Input Voltage Ripple ... 11
14 CCM Output Voltage Ripple ... 11
15 DCM Output Voltage Ripple ... 11
16 Pulse Skipping Output Voltage Ripple .. 11
17 Output Voltage Load Transient Response ... 11

List of Tables

1 Inverting Power Supply Requirements ... 4
2 Electrical Characteristics for the Inverting Power Supply 4
1 **Description of Application**

This application report presents the design procedure for creating an inverting power supply using a synchronous step-down regulator. A negative output voltage is generated from a positive input voltage. Applications that may require a negative output voltage from a positive input voltage include double-ended sensors and audio amplifiers to name a few.

A synchronous topology has certain advantages over a nonsynchronous topology including higher efficiency at low voltages and a smaller solution size. The synchronous regulator uses an internal rectifying MOSFET instead of an external rectifying Schottky diode reducing the solution size. The TPS54061 features a wide input voltage range of 60V to withstand input voltage transients and supply negative output voltages of -5V, -12V, -24V or more. Unlike typical synchronous regulators, the TPS54061 also features synchronous rectifier diode emulation allowing it to enter DCM (discontinuous conduction mode) at light loads improving efficiency.

Using a synchronous buck regulator in an inverting buck-boost topology simply requires redefining the output voltage (Vout) and device ground (GND) connections. In a standard buck topology Vout is connected to the inductor and the return is connected to GND shown in Figure 1.

![Figure 1. Buck Topology](image-url)
In the inverting buck-boost GND is connected to the inductor and the return is connected to Vout shown in Figure 2.

![Figure 2. Inverting Buck-Boost Topology](image)

The electrical requirements of the design example are listed in Table 1.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>VALUE / RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>Input Voltage</td>
<td>24 V nominal 12 V to 48 V</td>
</tr>
<tr>
<td>Vout</td>
<td>Output Voltage</td>
<td>−12 V</td>
</tr>
<tr>
<td>ΔVout</td>
<td>Output Voltage Ripple</td>
<td><0.5%</td>
</tr>
<tr>
<td>Iout</td>
<td>Output Current</td>
<td>100 mA</td>
</tr>
<tr>
<td>fsw</td>
<td>Switching Frequency</td>
<td>400 kHz</td>
</tr>
</tbody>
</table>

2 Design Considerations

Some important requirements which must be considered for the application are listed in Table 2. To power up the supply, the input voltage must be greater than the minimum required voltage for the device (4.7V). After the output is in regulation the device is referenced to the negative output and a much lower input voltage is needed to turn the supply off. Turn off typically occurs when the peak inductor current limit is exceeded and the output voltage approaches 0V. The maximum allowable output voltage is limited by the maximum operating input voltage of the TPS54061 (60V). The voltage difference between Vin and Vout must never exceed the Vdev(max). Because the MOSFETs are internal to the IC, the maximum load current will depend on the minimum peak current limit of the internal switches (Icl) which limits the peak current of the inductor (ILpeak).

<table>
<thead>
<tr>
<th>Inverting Power Supply Restrictions</th>
<th>Synchronous Device Used</th>
<th>TPS54061</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin(min)</td>
<td>></td>
<td>Vdev(min)</td>
</tr>
<tr>
<td>Vin(max) - Vout</td>
<td><</td>
<td>Vdev(max)</td>
</tr>
<tr>
<td>ILpeak(min)</td>
<td><</td>
<td>Icl(min)</td>
</tr>
</tbody>
</table>
3 Design Procedure

3.1 Schematic

Figure 3. Inverting Power Supply Schematic

3.2 Maximum Input Voltage and Output Voltage

The difference in the maximum input voltage, \(\text{Vin}(\text{max}) \), and the output voltage, \(\text{Vout} \), must not exceed the maximum operating device voltage of the regulator. For the TPS54061, the maximum operating device voltage, \(\text{Vdev}(\text{max}) \), is 60V.

\[
\text{Vin}(\text{max}) \leq \text{Vdev}(\text{max}) + \text{Vout} \quad (1)
\]

\[
\text{RHS} = \text{RLS} \times \left(\frac{-\text{Vout}}{\text{Vref}} - 1 \right) \quad (2)
\]

The \(\text{Vout} \) for the sample design is \(-12\)V so using Equation 1, the input voltage for the power supply can be as high as 48V which supports the 48-V maximum input requirement in Table 1. Equation 2 determines \(\text{RHS} \) for the desired output voltage. Assuming \(\text{RLS} \) is 10 k\(\Omega \) and \(\text{Vref} \) is 0.8V for the TPS54061, \(\text{RHS} \) equals 140 k\(\Omega \) (140-k\(\Omega \) standard value).

3.3 Minimum Input Voltage

The operating input voltage, \(\text{Vin}(\text{min}) \) of the power supply must be greater than the minimum device voltage, \(\text{Vdev}(\text{min}) \). For TPS54061, the \(\text{Vdev}(\text{min}) \) is 4.7V. The minimum input voltage requirement for the power supply is 12V, thus, satisfying Equation 3.

\[
\text{Vin}(\text{min}) \geq \text{Vdev}(\text{min}) \quad (3)
\]

3.4 Duty Cycle

The steady-state duty cycle for the inverting power supply is shown in Equation 4, neglecting the losses of the power switching and inductor. The output voltage, \(\text{Vout} \), is negative and the input voltage, \(\text{Vin} \), is positive, yielding a positive result for Equation 4.

\[
\text{D} = \frac{-\text{Vout}}{\text{Vin} - \text{Vout}} \quad (4)
\]
The maximum duty cycle, D_{max}, is calculated using the minimum input voltage, $V_{\text{in}(\text{min})}$, for the input voltage V_{in} in Equation 4. Assuming 12V for $V_{\text{in}(\text{min})}$ and Vout of -12V, the maximum duty cycle, D_{max}, is 0.50. Similarly, D_{min} is evaluated by using maximum input voltage, $V_{\text{in}(\text{max})}$ of 48V for V_{in}, is calculated to be 0.20.

3.5 Output Current

To estimate whether the selected switching regulator is capable of delivering the required output current, use Equation 5. The user must know the device’s (TPS54061) minimum peak current limit, $I_{\text{cl}(\text{min})}$, maximum duty cycle, D_{max}, and estimate the inductor ripple current value, I_{ripple}. Assuming the minimum current limit is 250mA and the I_{ripple} is 50% of the minimum current limit ($I_{\text{ripple}} = 0.5 \times I_{\text{cl}(\text{min})}$), the estimated maximum output current supported by the TPS54061 is 100mA which satisfies the design requirements of Table 1. The inductor current ripple impacts the maximum output current. Higher current ripple produces lower output current but allows the use of smaller inductors. Also note the maximum output current depends on the full load efficiency in the final design.

\[
I_{\text{out(\text{max})}} \leq \left(I_{\text{cl}(\text{min})} - \frac{I_{\text{ripple}}}{2} \right) \times (1 - D_{\text{max}})
\]

3.6 Operating Frequency

Choosing the switching frequency for the regulator is a tradeoff between higher efficiency versus smaller size. Higher switching frequencies may produce a smaller solution size using lower valued inductors and smaller output capacitors, compared to a power supply than switches at a lower frequency. However, higher switching frequency causes extra switching losses, which hurt the converter’s efficiency and thermal performance.

In this design example, a moderate switching frequency of 400 kHz is selected to achieve both a relatively small solution size and high-efficiency operation. The switching frequency is set with a resistor, R_T, from the RT/CLK pin to the GND of the TPS54061 device. Using Equation 6, the frequency set resistor is 142 kΩ (143-kΩ standard value).

\[
R_T (\text{k}\Omega) = \frac{71657}{f_{\text{SW}} (\text{kHz})^{0.39}}
\]

The switching frequency must be less than the maximum switching frequency supported by the device which is 1100kHz for the TPS54061. The maximum switching frequency is also limited by the minimum controllable on-time required to support the minimum duty cycle (D_{min}). The maximum switching frequency to avoid pulse skipping at D_{min} is calculated using Equation 7 to be 1700kHz.

\[
f_{\text{SW}} (\text{max \ skip}) = \left(\frac{1}{T_{\text{ON}}} \right) \times \frac{-V_{\text{out}} + R_{\text{ds}_G} \times I_{\text{out}} + R_{\text{dc}} \times I_{\text{out}}}{V_{\text{in}(\text{max})} - I_{\text{out}} \times R_{\text{ds}_H} + I_{\text{out}} \times R_{\text{ds}_L} - V_{\text{out}}}
\]

Where:
- $T_{\text{ON}} = \text{minimum controllable on time, 120\text{ns}}$
- $R_{\text{ds}_G} = \text{typical high side MOSFET on resistance, 1.5\Omega}$
- $R_{\text{ds}_L} = \text{typical low side MOSFET on resistance, 0.8\Omega}$
- $R_{\text{dc}} = \text{DCR of inductor, 1.15\Omega}$

The TPS54061 also features a frequency shift to avoid over current runaway during an output short circuit. The maximum allowable switching frequency for short circuit protection is calculated using Equation 8 to be 659kHz.

\[
f_{\text{SW}} (\text{max \ shift}) = \left(\frac{\text{fdv}}{T_{\text{ON}}} \right) \times \frac{-V_{\text{osc}} + R_{\text{ds}_LS} \times I_{\text{out}(cl)} + R_{\text{dc}} \times I_{\text{out}(cl)}}{V_{\text{in}(\text{max})} - I_{\text{out}(cl)} \times R_{\text{ds}_H} + I_{\text{out}(cl)} \times R_{\text{ds}_L} - V_{\text{osc}}}
\]

Where:
- $V_{\text{osc}} = \text{output voltage during output short circuit, -0.1V}$
- $\text{fdv} = \text{frequency division term, 8 when vosc is less than 25% of the regulation Vout}$
- $I_{\text{out}(cl)} = \text{maximum output current at current limit with maximum input voltage calculated with}$
Equation 5, 188mA
See the TPS54061 data sheet for more details on frequency shift protection.

3.7 Inductor
To determine the inductor value, calculate the average inductor current, \(I_{\text{Lavg}} \), at the maximum output current and minimum input voltage using Equation 9. Assuming maximum output current, \(I_{\text{out}} \) is 100mA and using maximum duty cycle \(D_{\text{max}} \), \(I_{\text{Lavg}} \) is 200mA.

The inductor value is calculated with Equation 10 assuming a ripple current that is 50% of the average inductor current. Using the \(D_{\text{min}} \) to calculate the minimum inductance value gives a larger inductance value. Assuming \(V_{\text{in}}(\text{max}) \) of 48V, \(I_{\text{out}} \) of 100mA, and a \(f_{\text{sw}} \) of 400kHz, the \(L_{\text{o}} \) is calculated as 384\(\mu \)H. The nearest standard inductor 330\(\mu \)H is chosen for \(L_{\text{o}} \). The inductor saturation current must be greater than the 223mA peak current calculated in Equation 11 and \(I_{\text{Lpeak}} \) should be less than \(I_{\text{cl}(\text{min})} \) of the TPS54061. Conservative designs use the \(I_{\text{cl}(\text{typ})} \) as the inductor saturation current to account for any transients. \(I_{\text{cl}(\text{typ})} \) of the TPS54061 is 350mA. The inductor rms current rating must be greater than 127mA calculated in Equation 12. The selected inductor is the WE 744777233 with 450mA saturation current rating, 390mA rms current rating and 1.15\(\Omega \) DCR.

\[
I_{\text{Lavg}} = \frac{I_{\text{out}}}{1 - D_{\text{max}}} \\
L_{\text{o}} = \frac{V_{\text{in}}(\text{max}) \times D_{\text{min}}}{(f_{\text{sw}} \times I_{\text{Lavg}} \times 0.5)} \\
I_{\text{Lpeak}} = I_{\text{out}} + \frac{V_{\text{in}}(\text{min}) \times D_{\text{max}}}{2 \times f_{\text{sw}} \times L_{\text{o}}} \\
I_{\text{Lrms}} = \sqrt{\left(\frac{I_{\text{out}}}{1 - D}\right)^2 + \frac{1}{12} \times \left(\frac{V_{\text{in}} \times D}{f_{\text{sw}} \times L_{\text{o}}}\right)^2}
\]

3.8 Output Capacitor
The output capacitor must supply the output current when the high-side switch is on and the inductor current flows from \(V_{\text{in}} \) to GND. Use the minimum input voltage to calculate the output capacitance needed which corresponds to the maximum duty cycle and peak-to-peak current in the output capacitor. Using the 0.5% voltage ripple specification in Equation 13, \(C_{\text{o}(\text{min})} \) is calculated to be 2.1\(\mu \)F. Assuming the 0.5% voltage ripple and maximum duty cycle, the \(R_{\text{c}} \), equivalent series resistance must be less than 269\(\Omega \) from Equation 14. The rms current for the output capacitor is 100mA from Equation 15. A single 10\(\mu \)F/25V X5R is used for the output capacitor because of the low ESR and size. The output capacitor is derated by 20% because of DC bias.

\[
C_{\text{o}(\text{min})} \geq \frac{I_{\text{out}(\text{max})} \times D_{\text{max}}}{f_{\text{sw}} \times \Delta V_{\text{out}}} \\
R_{\text{c}} \leq \frac{\Delta V_{\text{out}}}{I_{\text{out}} \times V_{\text{in}}(\text{min}) \times D_{\text{max}} + \frac{1}{2 \times f_{\text{sw}} \times L_{\text{o}}} \\
I_{\text{c(\text{rms})}} = I_{\text{out}(\text{max})} \times \sqrt{\frac{1}{1 - D_{\text{max}}}}
\]

3.9 Power Dissipation in Package
The power dissipation in the TPS54061 is dominated by the conduction losses and switching losses of the power switches and must not exceed the limitations of the package. The conduction and switching losses are calculated using Equation 16. The conduction losses are a function of the duty cycle, \(D \), inductor rms current, \(I_{\text{Lrms}} \), and MOSFET on resistance, \(R_{\text{ds}_{\text{HS}}} \) and \(R_{\text{ds}_{\text{LS}}} \). The switching losses are a function of the rise \((t_{\text{r}}) \) and fall times \((t_{\text{f}}) \), switching frequency, output current, and input and output voltage. \(P_{\text{device}} \) is calculated to be 0.661 W assuming a \(t_{\text{r}} \) and \(t_{\text{f}} \) of 25 ns.
Design Procedure

\[
P_{\text{device}} = D \times R_{\text{DS(\text{HS})}} \times I_{\text{LRms}}^2 + (1-D) \times I_{\text{LRms}}^2 \times R_{\text{DS(\text{LS})}} + \frac{1}{2} \times (V_{\text{in}} - V_{\text{out}}) \times \left(\frac{I_{\text{out}}}{1-D}\right) \times (1 + f_{\text{sw}}) \times f_{\text{sw}} \quad (16)
\]

3.10 Input Capacitors

The TPS54061 needs closely located 1µF ceramic bypass capacitor connected between the Vin and GND pins of the device which is connected to Vout. Because the device GND is the power supply output voltage, the voltage rating of the capacitor must be greater than the difference in the maximum input and output voltage of the power supply. A single 1µF high is used with an additional 0.1µF for added high frequency bypass (CD1 and CD2).

In some applications an additional bulk input capacitance is needed between the Vin and the system ground to limit voltage ripple on the input supply. Equation 17 through Equation 20 are used to estimate the capacitance, maximum ESR, and current rating for the input capacitor, Ci, limiting the ripple to 10% of Vin(min). Using Equation 17, the estimated average input current is 100mA. Using Equation 18 and Equation 19, the minimum required input capacitance is 2.1µF and the maximum ESR is 1.20Ω. Using Equation 20, the input capacitor needs at least 112-mA current rating. A single 2.2µF/100 V X7R is used for the input capacitor because of the low ESR and size.

\[
I_{\text{in(\text{avg})}} = \frac{I_{\text{out}} \times D_{\text{max}}}{(1 - D_{\text{max}})} \quad (17)
\]

\[
C_{i} = \frac{I_{\text{in(\text{avg})}}}{f_{\text{sw}} \times 0.01 \times V_{\text{in (min)}}} \quad (18)
\]

\[
E_{\text{SRci}} \leq \frac{0.01 \times V_{\text{in (min)}}}{\text{lin (avg)}} \quad (19)
\]

\[
I_{\text{cirms}} = \sqrt{\left(L_{\text{peak}} - \text{lin(avg)}\right)^2 + \frac{\left(V_{\text{in(min)}} \times D_{\text{max}} - L_{o} \times f_{\text{sw}}\right)^2}{12}} \times D_{\text{max}} + \text{lin(avg)}^2 \times (1 - D_{\text{max}}) \quad (20)
\]

3.11 Slow-Start Time

The TPS54061 has an internally fixed 2.36 ms typical slow-start time eliminating the need for an external capacitor.

3.12 Frequency Response of the Inverting Regulator

A buck-boost regulator to generate a negative output voltage has a different feedback loop characteristic than a buck power supply. Therefore, a different design method is needed. The inverting power supply transfer function has two zeroes and a pole. Equation 21 is a simplified transfer function of an inverting power supply. The ESR zero, \(f_{z1} \), is the same as in a buck regulator (Equation 22) and is a function of the output capacitor and its ESR. The other zero is a right half plane zero, \(f_{z2} \). The frequency response of the \(f_{z2} \) results in increasing gain and decreasing phase. The \(f_{z2} \) frequency is a function of the duty cycle, output current, and the inductor. Equation 23 calculates the minimum frequency of the \(f_{z2} \) which is used to determine the crossover frequency. The dominant pole, \(f_{p1} \), is a function of the load current, output capacitor, and duty cycle (Equation 24). Kbb is the dc gain and is used to calculate the frequency compensation components. The gmp variable is the transconductance of the power stage, which is 1 A/V for the TPS54061.

The \(f_{z1} \) is calculated to be 3980 kHz. The output capacitor is derated by 20% because of the dc bias and the ESR is assumed to be 5 mΩ. The \(f_{z2} \) is calculated to be 28.9 kHz assuming resistance of the inductor (Rdc) is 1.15Ω. The \(f_{p1} \) is estimated to be 199 Hz assuming the maximum duty cycle. Kbb is calculated as 40.0 V/V using Equation 25, assuming minimum input voltage.
The crossover of the power supply must be set between the \(f_{p1} \) and 1/3 of \(f_{z2} \) frequencies. It is recommended to start with the crossover frequency, \(f_{co} \), given by Equation 26. The \(f_{co} \) is estimated to be 2.4kHz.

\[
 f_{co} = (f_{p1} \times f_{z2})^{0.5}
\]

(26)

The compensation resistor, \(R_{comp} \), needed to set the compensation gain at the \(f_{co} \) frequency is calculated using Equation 27. The \(V_{ref} \) is 0.8 V and \(gmea \) is 108 \(\mu \)A/V for the TPS54061.

\[
 R_{comp} = \left(\frac{ f_{co} }{ Kbb \times f_{p1} } \right) \times \left(\frac{-V_{out}}{V_{ref} \times gmea} \right)
\]

(27)

The compensation zero is set to ½ of the dominant pole, \(f_{p1} \). Using Equation 28 to calculate the compensation zero capacitor, \(C_{zero} \), gives 0.38 \(\mu \)F. Use the nearest standard value which is 0.33 \(\mu \)F. The compensation pole is set to equal the RHP zero, \(f_{z2} \). Use Equation 29, to calculate the frequency compensation pole, \(C_{pole} \), which gives 130pF. The nearest standard value is 120pF.

\[
 C_{zero} = \frac{1}{ \left(\frac{ f_{p1} }{ 2 } \right) \times 2\pi \times R_{comp} }
\]

(28)

\[
 C_{pole} = \frac{1}{ f_{z2} \times 2\pi \times R_{comp} }
\]

(29)

3.13 Synchronizing to an External Clock and Adjustable UVLO

The TPS54061 has a CLK pin that can be used to synchronize the switching frequency to an external system clock. A level shift circuit must be used to translate a system ground reference clock signal to the device’s ground (\(V_{out} \)). For the same reason a similar circuit is needed to interface with the EN pin for on/off control or for adjustable Vin UVLO.

4 Evaluation Results

Figure 4 to Figure 17 show the experimental test results of the Figure 3 design. The discontinues conduction mode (DCM) to continuous conduction mode (CCM) boundary is at an output current of 12mA. The pulse skipping boundary is at an output current of 0.2mA. The input current at no load at 24V input voltage is 1.08mA.
Figure 10. Shutdown Waveform with 100 mA Load

Figure 11. CCM Input Voltage Ripple

Figure 12. DCM Input Voltage Ripple

Figure 13. Pulse Skipping Input Voltage Ripple

Figure 14. CCM Output Voltage Ripple

Figure 15. DCM Output Voltage Ripple
5 References

1. *Create an Inverting Power Supply From a Step-Down Regulator*, David Daniels, Application Report, Literature Number (SLVA317)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated