Low-Level Output Voltage Versus Sinking Current of a Bipolar Output Amplifier (LM2902-Q1 or LM2904-Q1 Used as Example)

This application report provides a summary of the expected dependency of the output voltage on the sinking current of a bipolar output amplifier. Using LM2902-Q1 or LM2904-Q1 as the example for this application report, the output of the op amp depends on the sinking current when the output is below V_{be} of 600 mV. This is due to the output bipolar structure, which consists of PNP lower transistors. The application report refers to the LM2902-Q1 data sheet; however, it also pertains to the LM2904-Q1 and bipolar-output amplifiers in general.

1 Output Voltage Versus Sinking Current

Figure 1 shows the internal structure of LM2902-Q1. The lower transistor of the output stage is a bipolar PNP. The lower transistor is only active when the output voltage is higher than the PN junction voltage, V_{be}, of 600 mV. If the output voltage is lower than 600 mV, the PNP lower transistor is idle and cannot sink any current. A current regulator of 50 µA is built in parallel to the PNP for sinking current when the output is below 600 mV.

![Figure 1. LM2902-Q1 Schematic Showing 50-µA Current Regulator](image-url)
1.1 Data-Sheet and Bench-Test Verification of V_{OL} Versus I_{sink}

When looking at the data sheet (see Figure 2), the parameter V_{OL}, low-level output voltage, is listed as 5 mV typical and 20 mV maximum. This parameter is contingent on the fact that $RL \leq 10k\Omega$. It is not stated though that this parameter is also contingent on the fact that sinking current is less than 50 μA.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>T_A‡</th>
<th>LM2902-Q1</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}</td>
<td>$RL \leq 10k\Omega$</td>
<td>Full range</td>
<td>5 20</td>
<td>mV</td>
</tr>
</tbody>
</table>

Figure 2. Low-Level Output-Voltage Parameters

As mentioned previously, from Figure 1, there is a 50-µA current regulator at the output of the device. Therefore, if the sinking current is less than 50 µA, (the threshold is around 30 µA to 50 µA), then the output is within the data-sheet-specified range. If the sinking current is greater than 50 µA, then the output is higher than 20 mV.

Figure 3 shows the correlation between the output sink current and the output voltage when the sinking current is both below and above 50 µA. As the sinking current increases past 50 µA, the output voltage increases non-linearly until it stabilizes at around 600 mV. This non-linearity is due to the base-emitter drop.

The Figure 3 graph is available in the LM2902-N data sheet (SNOSC16), and bench tests show that TI’s op amp acts in the same manner (see Table 1). Note that the graph shows the output voltage versus sinking current for open-loop gain.

![Output Characteristics](image)

Figure 3. Output Voltage Versus Sinking Current
Table 1. Bench Data for Output Voltage Versus Sinking Current\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter (^{(2)}) (3)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo = 2 V, Vcc = 5 V</td>
<td>8.7</td>
<td>12.9</td>
<td>15.2</td>
<td>mA</td>
</tr>
<tr>
<td>Vo = 2 V, Vcc = 15 V</td>
<td>9.2</td>
<td>13.2</td>
<td>16.7</td>
<td>mA</td>
</tr>
<tr>
<td>Vo = 0.3 V, Vcc = 5 V</td>
<td>23.1</td>
<td>43.6</td>
<td>68.1</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.3 V, Vcc = 15 V</td>
<td>29</td>
<td>52.9</td>
<td>81.3</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.2 V, Vcc = 5 V</td>
<td>22.9</td>
<td>40.5</td>
<td>55.7</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.2 V, Vcc = 15 V</td>
<td>28.9</td>
<td>50.6</td>
<td>69.9</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.1 V, Vcc = 5 V</td>
<td>22.2</td>
<td>34.1</td>
<td>47.9</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.1 V, Vcc = 15 V</td>
<td>25.7</td>
<td>41.8</td>
<td>58.7</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.05 V, Vcc = 5 V</td>
<td>15.4</td>
<td>20</td>
<td>26.7</td>
<td>µA</td>
</tr>
<tr>
<td>Vo = 0.05 V, Vcc = 15 V</td>
<td>18.2</td>
<td>23.8</td>
<td>36.7</td>
<td>µA</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Bench test schematic shown in Figure 4
\(^{(2)}\) Data is across the full temperature range of -40 °C to 125 °C
\(^{(3)}\) Performance of bench test was with Vo forced to the same voltage as Vin.

Figure 4. Bench-Test Schematic

2 Examples and Solutions

2.1 Resistor and Parameter Optimization

To avoid a non-linear output, optimize the resistor network as follows. For selection of optimum value and parameters for the resistors network, there are two cases to consider:

- **When output voltage is higher than Vbe of 600 mV, the PNP transistor is active and is capable of sinking current of a few mA. The output voltage is proportional to the input Vi, and \(Vo = G \times Vi\), where \(G\) is the gain in a closed loop relative to the network resistors. Using the example in Figure 5, \(Vo = \frac{Rg}{Ra} \times (V2 – V1)\), where \(V2 – V1\) can be the voltage drop across a sense resistor.**

- **When output voltage is lower than Vbe of 600 mV, the PNP is idle and can not sink any current. In this case, the only available path is the 50-µA current regulator. Using Figure 5 again, the output voltage is proportional to the input. \(Vo = \frac{Rg}{Ra} \times (V2 – V1)\) only if the current sink is lower than the 50-µA current regulator. If the sinking current is higher than 50 µA, the output is no longer equal to \(\frac{Rg}{Ra} \times (V2 – V1)\). The output voltage is at higher value.**
Following are several points to consider for resistor and parameter optimization:

- Common-mode voltage V1
- \(V_2 - V_1 \) is the differential voltage, that is, the voltage drop across a sense resistor.
- External voltage \(V_{ext} \) can be at GND, Vcc or any other voltage.
- Gain network resistors \(R_a \) and \(R_g \)
- RL load resistor
- Output current sink: \(I_{sink} = I_1 + I_2 \)

As mentioned, from Figure 5, the output voltage is proportional to the input as long as the sinking current is lower than the sinking capability according to:

\[
V_O = \frac{R_g}{R_a} (V_2 - V_1)
\]

Another formula for output voltage \(V_o \) in terms of other various parameters is:

\[
V_O = \frac{R_L}{R_L + R_a + R_g} V_1 + \frac{R_a + R_g}{R_L + R_a + R_g} V_{ext} - \frac{R_L (R_a + R_g)}{R_L + R_a + R_g} I_{sink}
\]

Equation 1 is only valid if \(I_{sink} \) is lower than the capacity of the 50-µA current regulator.

Equation 2 is always valid regardless of current-sink capacity.

2.2 Numerical Calculation for Output Voltage Proportional to Input

When the output voltage is proportional to the input voltage (for any level if the sinking current is less than 50 µA), one can combine Equation 1 and Equation 2 as:

\[
\frac{R_g}{R_a} (V_2 - V_1) = \frac{R_L}{R_L + R_a + R_g} V_1 + \frac{R_a + R_g}{R_L + R_a + R_g} V_{ext} - \frac{R_L (R_a + R_g)}{R_L + R_a + R_g} I_{sink}
\]
Using Figure 6 as an example:

- \(V_{ext} = 0 \text{ V} \), \(RL \) is a load resistor
- \(V_1 \) is the common-mode voltage, very close to battery voltage \(V_{bat} \)
- \(Rs \) is the sense resistor and \(I_b \) is the measured current. Low drop across \(Rs \)
- \(V_2 - V_1 = Rs \times I_b \)

Now one can rewrite Equation 3 as:

\[
\frac{R_g(R_sI_b)}{R_a} = \frac{RL}{R_L + R_a + R_g} V_{bat} - \frac{R_L(R_a + R_g)}{R_L + R_a + R_g} I_{sink}
\]

Equation 4 helps to calculate the resistor values, which are:

\[RL = 10 \text{ k}\Omega, \ Rs = 0.49 \text{ \Omega}, \ V_{bat} = 12 \text{ V}, \ Isink = 50 \mu\text{A}, \]

Assuming the output voltage is 5 V at 1-A battery current:

The gain \(R_g / R_a = V_o / (Rs \times I_b) = 5 / 0.49 \approx 10 \)

For precise measurement at an output voltage lower than 600 mV, the sinking current should be less than 50 \(\mu\text{A} \).

Consider \(V_o = R_g / R_a \times Rs \times I_b = 0.25 \text{ V} \). Battery current \(I_b = 0.25 / (10 \times 0.49) = 50 \text{ mA} \)

Therefore: \(0.25 \text{ V} = 10 \text{ k}\Omega / (10 \text{ k}\Omega + Ra + 10 \text{ Ra} \times 12 \text{ V} - 10 \times 11 \text{ Ra} / (10 \text{ k}\Omega + Ra + 10 \text{ Ra}) \times 0.05 \)

Solving this equation gives \(Ra = 14.24 \text{ k}\Omega \) and \(R_g = 142.4 \text{ k}\Omega \).

2.3 Example Simulations

In Figure 7, the example circuit shows how initially, the major parameters of the device (such as \(V_{cc} \) and \(V_{in} \)) are all within spec; however, after analysis, it Figure 8 shows that the circuit is pulling around 184 \(\mu\text{A} \) and therefore out of data-sheet specifications at around 40 mV.

Figure 9 shows how the non-linear relation is due to the base-emitter drop. The device in Figure 9 is the TLV2374-Q1, a rail-to-rail quad op amp, which does not have this problem. Using the exact same test setup, the device is still within specification even though the output sinks around 185 \(\mu\text{A} \).

Note that as these examples are simulations, they provide a general approximation of how the device should operate. The parameters can vary by device.
Figure 7. Example Circuit

Figure 8. Example Circuit With Current Analysis
One solution for reducing sinking current would be to add a load resistor to the circuit. To be able to sink 50 µA or less and be within datasheet limits, RL should be less than or equal to 100 Ω. See Figure 10 for an example.

Figure 10. Example Circuit With Load Resistor
Another solution for reducing sinking current would be to add an offset to the circuit. In this case, an offset of at least 200 kΩ (to VCC) sets the input voltages to approximately what they were before and drops VOL to be within range of the data-sheet specification. Note that adding an intentional offset does not decrease the sinking current. See Figure 11 for example.

Figure 11. Example Circuit With Offset Resistor

3 Summary

When the op amp is stable and at 600 mV or above, the sinking current path goes through the PNP transistor. Otherwise, the 50-μA current regulator holds the output low and within the range of the data-sheet specification when the sinking current is at or below 50 μA. If the sinking current is higher than 50 μA (but the output is still lower than 600 mV), then the output is non-linear and not within the stated data-sheet limits.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio
Amplifiers
amplifier.ti.com
Data Converters
dataconverter.ti.com
DLP® Products
www.dlp.com
DSP
dsp.ti.com
Clocks and Timers
www.ti.com/clocks
Interface
interface.ti.com
Logic
logic.ti.com
Power Mgmt
power.ti.com
Microcontrollers
microcontroller.ti.com
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
Applications

Automotive and Transportation
www.ti.com/automotive
Communications and Telecom
www.ti.com/communications
Computers and Peripherals
www.ti.com/computers
Consumer Electronics
www.ti.com/consumer-apps
Energy and Lighting
www.ti.com/energy
Industrial
www.ti.com/industrial
Medical
www.ti.com/medical
Security
www.ti.com/security
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Video and Imaging
www.ti.com/video

E2E Community
e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated