Fault Tree Analysis (FTA)

Samir Camdzic
Automotive Products

ABSTRACT

ASIC level FTA used in automotive applications in cabin temperature environment. FTA analysis completed from perspective of fault(s) causing hazard regardless of time when fault(s) occur. This could be from time \(t = 0 \) onward.

Contents

1 References .. 2
2 Diagrams ... 3
3 Hazards ... 26
4 Analysis ... 26
 4.1 Description .. 26
 4.2 Faulty Switch Regulator Cut Sets .. 26
5 Conclusion ... 26

Figures

Figure 1. Device Block Diagram .. 3
Figure 2. TPS54310-Q1 Undervoltage Fault Tree .. 4
Figure 3. Faulty Regulation Fault Tree .. 5
Figure 4. Faulty Voltage Monitoring Fault Tree .. 6
Figure 5. HS Pre-Driver Failure Fault Tree .. 7
Figure 6. Voltage Reference Failure Fault Tree .. 8
Figure 7. OSC Frequency Setting Failure .. 9
Figure 8. LS Pre-Driver Failure Fault Tree .. 10
Figure 9. VIN Failure Fault Tree .. 11
Figure 10. VSENSE Power Good Detection failure fault tree ... 12
Figure 11. Set/Reset Circuit Failure fault tree ... 13
Figure 12. PWM Generation failure fault tree ... 14
Figure 13. Current Limit Detection failure fault tree ... 15
Figure 14. Shutdown Detection failure fault tree ... 16
Figure 15. Slow Start failure fault tree ... 17
Figure 16. High Side Supply failure fault tree .. 18
Figure 17. VIN Undervoltage Lockout failure fault tree .. 19
Figure 18. SS/ENA Detection failure fault tree .. 20
Figure 19. Reference clock failure .. 21
Figure 20. SS/EN Comparator failure fault tree .. 22
Figure 21. Internal Regulator failure fault tree .. 23
Figure 22. TPS54310 Undervoltage fault tree importance diagram ... 24
Figure 23. Faulty Regulation fault tree importance diagram .. 24
Figure 24. VSENSE Monitoring fault tree importance diagram .. 25
Figure 25. Adaptive PWM Control Circuit fault tree importance diagram 25
ABBREVIATIONS

<table>
<thead>
<tr>
<th>AMP</th>
<th>Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>Bandgap</td>
</tr>
<tr>
<td>BVDSS</td>
<td>Drain Source Breakdown Voltage</td>
</tr>
<tr>
<td>BW</td>
<td>Bond Wire</td>
</tr>
<tr>
<td>COMP</td>
<td>Comparator</td>
</tr>
<tr>
<td>EPB</td>
<td>Electronic Park Brake</td>
</tr>
<tr>
<td>IDDQ</td>
<td>Quiescent Supply Current</td>
</tr>
<tr>
<td>OVST</td>
<td>Over Voltage Stress Test</td>
</tr>
<tr>
<td>PT</td>
<td>Production Test</td>
</tr>
<tr>
<td>PTAT</td>
<td>Proportional to Absolute Temperature</td>
</tr>
<tr>
<td>REF</td>
<td>Reference</td>
</tr>
<tr>
<td>REG</td>
<td>Regulator</td>
</tr>
<tr>
<td>S/C</td>
<td>Short Circuit</td>
</tr>
<tr>
<td>SOA</td>
<td>Safe Operating Area</td>
</tr>
<tr>
<td>URA</td>
<td>Unintended Relay Actuation</td>
</tr>
<tr>
<td>V5AOV</td>
<td>V5A Regulator Over Voltage</td>
</tr>
<tr>
<td>V5OV</td>
<td>V5 Regulator Over Voltage</td>
</tr>
</tbody>
</table>

1 References

SLVS726 - 3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™) - January 2007 (http://www.ti.com/lit/gpn/tps54610-q1)
2 Diagrams

Figure 1. Device Block Diagram
Figure 2. TPS54310-Q1 Undervoltage Fault Tree
Fault Tree Analysis (FTA)

Faulty Regulation Fault Tree

Figure 3. Faulty Regulation Fault Tree
Figure 4. Faulty Voltage Monitoring Fault Tree
Figure 5. HS Pre-Driver Failure Fault Tree
Voltage Reference Failure Fault Tree

Figure 6. Voltage Reference Failure Fault Tree
Figure 7. OSC Frequency Setting Failure
Figure 8. LS Pre-Driver Failure Fault Tree
Fault Tree Analysis (FTA)

VIN Supply failure

VIN UV

VIN UVLO Monitor Failure

VIN PIN FAULT

VIN pin and/or bond wire fault

VIN LOW

VIN Supply Voltage Low

VIN LOW

VIN supply low

VIN LOW

Q=5.200e-5

VIN UVLO FAULT

Q=1.300e-5

VIN supply low

VIN UV

Q=6.760e-10

Figure 9. VIN Failure Fault Tree
Figure 10. VSENSE Power Good Detection failure fault tree
Figure 11. Set/Reset Circuit Failure fault tree
Figure 12. PWM Generation failure fault tree
Figure 13. Current Limit Detection failure fault tree
Figure 14. Shutdown Detection failure fault tree
Figure 15. Slow Start failure fault tree
Figure 16. High Side Supply failure fault tree
Figure 17. VIN Undervoltage Lockout failure fault tree
Figure 18. SS/ENA Detection failure fault tree
Figure 19. Reference clock failure
Figure 20. SS/EN Comparator failure fault tree
Fault Tree Analysis (FTA) 23

Figure 21. Internal Regulator failure fault tree
Figure 22. TPS54310 Undervoltage fault tree importance diagram

Figure 23. Faulty Regulation fault tree importance diagram
Figure 24. VSENSE Monitoring fault tree importance diagram

Figure 25. Adaptive PWM Control Circuit fault tree importance diagram
3 Hazards

a. Faulty Switch Regulator leading to undervoltage condition

4 Analysis

4.1 Description

Cut Set: A group of events which will cause system failure when occurring together.

1st Order Cut Set: Single event failure causing hazard.

2nd Order Cut Set: Two failing events causing hazard.

3rd Order Cut Set: Three failing events causing hazard.

4th Order Cut Set: Four failing events causing hazard.

Base Event: Description of base events in associated fault tree diagram. Base events and their description referenced to TI’s design database.

4.2 Faulty Switch Regulator Cut Sets

Hazard: Faulty Switch regulator leading to under voltage condition.

For this hazard a total 36 individual cut sets have been analyzed.

5 Conclusion

ASIC level hazard FTA completed. Switch regulator proactive system level monitoring and protection considerations were included.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated