ABSTRACT

The output filter is a crucial piece of the operational characteristics of TPS65250, TPS65251, TPS65252, and TPS65253 devices. Through careful selection properties such as output ripple, transient response, and efficiency can be adjusted to meet the needs of your application. The output filter of these devices consists of an LC network. While optimal component values are dependent on input voltage, output voltage, and switching frequency; 4.7uH and 22uF are recommended starting values.
Table of Contents

1. **TPS65250/1/2/3 Output Filter Selection Guidelines** ... 5
 1.1 Inductor Selection.. 5
 1.2 Output Ripple .. 5
 1.3 Converter Efficiency ... 7
 1.4 Choosing \(K_{\text{IND}} > 0.3 \) .. 8
 1.5 Inductor Selection and Low Power Mode .. 10
 1.6 Inductor Selection and Proper Ramp Creation Mode Control .. 11
 1.7 Transient Response and Inductor Choice ... 12
 1.8 Capacitor Selection (Ripple is not Critical Parameter) .. 15
Figures

Figure 1. Output Ripple (23mV @3.3µH) ... 6
Figure 2. Output Ripple (6mV @21µH) ... 6
Figure 3. Output Ripple (7mV @12µH) ... 7
Figure 4. Converter Efficiency, Light Load ... 7
Figure 5. Converter Efficiency, High Load ... 8
Figure 6. K_{IND} for Cost Critical, Low Power Applications 9
Figure 7. Effects of Inductor Choice on Efficiency Plots (5V Output Case) 9
Figure 8. Low Power 3.3µH, 500kHz ... 10
Figure 9. Low Power 21µH, 500kHz ... 11
Figure 10. Proper Ramp Creation Current Mode Control 12
Figure 11. Transient Response and Inductor Choice (0.5-1.5A step, 12µH) 13
Figure 12. Transient Response and Inductor Choice (0.5-1.5A step, 21µH) 13
Figure 13. Load Dump (2A step, 3.3 µH, 47µF) ... 14
Figure 14. Load Dump (2A step, 12 µH, 47µF) ... 15
Tables

Table 1. Inductor Values Chosen .. 5
Table 2. AC-DC Losses ... 8
Table 3. Inductor Selector and Low Power Mode .. 10
1 TPS65250/1/2/3 Output Filter Selection Guidelines

The choice of output filter components depends on a number of parameters related to:

- Output ripple (in conjunction with output capacitor),
- Converter efficiency especially at light load,
- Low power operation,
- Proper ramp creation for current mode operation,
- Transient response,
- Real estate, and
- Cost.

1.1 Inductor Selection

To calculate the value of the output inductor, use the following equation

\[L_0 = \frac{V_{in} - V_{out}}{I_0 \cdot K_{ind}} \cdot \frac{V_{out}}{V_{in} \cdot f_{sw}} \]

\(K_{ind} \) is a coefficient that represents the amount of inductor ripple current relative to the maximum output current. In general, \(K_{ind} \) is normally from 0.1 to 0.3 for the majority of applications, and the chosen value is a trade-off between different and sometimes opposite requirements.

The follow frequencies of interest should be assumed: 500 and 775 kHz. Table 1 shows the inductor values proposed. For the purpose of evaluation, the following inductors were chosen: 3.3\(\mu \)H, 15m\(\Omega \); 12\(\mu \)H, 38m\(\Omega \); and 21\(\mu \)H, 61m\(\Omega \).

<table>
<thead>
<tr>
<th>f /Kind</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 kHz</td>
<td>29.3 (\mu)H</td>
<td>9.8 (\mu)H</td>
<td>5.9 (\mu)H</td>
</tr>
<tr>
<td>775 kHz</td>
<td>18.9 (\mu)H</td>
<td>6.3 (\mu)H</td>
<td>3.8 (\mu)H</td>
</tr>
</tbody>
</table>

1.2 Output Ripple

Low \(K_{ind} \) values produce smaller ripple values for a given output capacitor. All tests are done at 500 kHz, and 2A load. Figures 1-3 show readings of the output ripple under certain test conditions. Also, the figures inside the drawings in Figures 1-3 are the ripple calculation as per TPS6525x calculator.
Figure 1. Output Ripple (23mV @3.3μH)

Figure 2. Output Ripple (6mV @21 μH)
1.3 Converter Efficiency

The inductor choice greatly affects light load efficiency performance. Using PFM mode in conjunction with proper inductor selection will show greater performance for loads under 100mA. Figure 5 shows that the output filter selection does not play a large role in high load efficiency.
1.4 Choosing $K_{\text{IND}} > 0.3$

Choosing $K_{\text{IND}} > 0.3$ will affect the quiescent current at no load (standby power). $K_{\text{IND}} > 0.3$ is too high. Many systems require less than 1W of standby power, and this includes AC-DC losses leaving less than 500mW for the DC-DC conversion, which is shown in Table 2. For this reason, it is therefore recommended to stay within $0.1 < K_{\text{IND}} < 0.3$ to reduce the inductor ripple current.

Table 2. AC-DC Losses
For applications where cost is critical, but low power is not, use the highest K_{IND} value. Figure 6 shows the K_{IND} for cost critical low power applications, and Figure 7 shows the effects the inductor choice has on the efficiency.

Figure 6. K_{IND} for Cost Critical, Low Power Applications
1.5 Inductor Selection and Low Power Mode

\[\Delta V_{OUT} \] decreases with increased inductance. Limited effects of switching frequency for \(K_{\text{IND}} \) are high.

Table 3. Induction Selector and Low Power Mode

<table>
<thead>
<tr>
<th>L</th>
<th>(\Delta V_{OUT})</th>
<th>(I_{IN})</th>
<th>(\Delta V_{OUT})</th>
<th>(I_{IN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (\mu \text{H})</td>
<td>64 mV</td>
<td>575 (\mu \text{A})</td>
<td>60 mV</td>
<td>568 (\mu \text{A})</td>
</tr>
<tr>
<td>12 (\mu \text{H})</td>
<td>33 mV</td>
<td>573 (\mu \text{A})</td>
<td>19 mV</td>
<td>567 (\mu \text{A})</td>
</tr>
<tr>
<td>21 (\mu \text{H})</td>
<td>22 mV</td>
<td>572 (\mu \text{A})</td>
<td>12 mV</td>
<td>570 (\mu \text{A})</td>
</tr>
</tbody>
</table>
Figure 8. Low Power 3.3μH, 500 kHz

Figure 9. Low Power 21μH, 500 kHz
1.6 Inductor Selection and Proper Ramp Creation Mode Control

The ramp slope is a function of inductor choice. If K_{ind} is smaller than 0.1, it should not be used. The switching mode for the jitter should be checked, K_{ind} should be increased if needed. Figure 10 shows the schematic of the proper ramp creation current mode control.

![Figure 10. Proper Ramp Creation Current Mode Control](image_url)
1.7 Transient Response and Inductor Choice

System responses are limited by the size of the chosen inductor as it will dictate how fast current can be built to respond to sudden load steps (in either direction). The smaller the inductor, the faster the system will respond. Figures 11 and 12 show the transient response at three different inductances.

Figure 11. Transient Response and Inductor Choice (0.5-1.5A step, 12μH)
As a generic rule the choice of inductor does not affect greatly the dynamic response when load step transient is not critical (ΔI is less than 50% full load, Δt is more than 5μS). In cases where major load steps happen or a “load dump” (load suddenly drops to zero or steps to maximum value) condition happens, it is advisable to choose the inductor based on the system dynamic response.

In Figure 13 and 14, the load dump is shown at 5V and 2A. For Figure 13, the 5V rail dips to 4.8V. The control loop is stable. For Figure 14, the 5V rail dips to 4.29V, and the control loop is not stable.
Figure 13. Load Dump (2A step, 3.3 μH, 47μF)

Figure 14. Load Dump (2A step, 12 μH, 47μF)
1.8 Capacitor Selection (Ripple is not Critical Parameter)

\[C = \frac{1.21 \times I_{tr}^2 \times L}{\Delta V^2} \]

\(I_{tr} \) = Transient current
\(L \) = output filter
\(\Delta V^2 \) = Maximum voltage excursion

Note that this equation is an approximation. The value it produces should be considered to be an absolute minimum amount. The exact value will have to be determined through experimentation.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of TI components in safety-critical applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
<tr>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated