ABSTRACT

This application report provides a summary of CISPR25-Radiated Emissions test results using the TPS54160-Q1 high-frequency buck converter. Similar results can be achieved using other devices in this family. This family of buck converters is capable of passing CISPR25 and other automotive electromagnetic-compatibility (EMC) test specifications. The TPS54160 family of devices does not require the use of programmable slew rate or frequency modulation. These devices can pass EMC tests by optimizing external components selection, placement, and board layout.

Contents

1 Schematics and Printed Circuit Board (PCB) Description ... 2
 1.1 Schematics for PMP6990 .. 2
 1.2 Bill of Materials for PMP6990 .. 3
 1.3 PCB Layout ... 4
 1.4 R-C Snubber Added From PH to GND .. 6
2 Description and Setup for Radiated Emissions Measurements ... 7
 2.1 Setup Conditions .. 7
 2.2 Test Results ... 8
3 Summary .. 9

List of Figures

1 PMP6990 Schematic .. 2
2 Top Assembly ... 4
3 Top-Layer Silkscreen and Routing .. 4
4 Layer 2 Routing ... 4
5 Layer 3 Routing ... 4
6 Bottom-Layer Silkscreen and Routing ... 5
7 With Snubber Added .. 6
8 Test Setup ... 7
9 CISPR25 Bicon Horizontal Results No R-C Snubber ... 8
10 CISPR25 Bicon Horizontal Results With R-C Snubber .. 8
11 CISPR25 Bicon Vertical Results No R-C Snubber .. 8
12 CISPR25 Bicon Vertical Results With R-C Snubber ... 8

List of Tables

1 PMP6990 BOM .. 3
2 Comparison of Results, With and Without R-C Snubber .. 9
1 Schematics and Printed Circuit Board (PCB) Description

PMP6990 EMC reference board was designed for passing EMC as required by automotive specification CISPR25. PMP6990 Revision-A printed-circuit board (PCB) was used for all testing. Devices that can be tested on this board include:

- **Non-automotive**: TPS54040, TPS54060, TPS54140, TPS54160, TPS54240, TPS54260
- **Automotive**: TPS57040-Q1, TPS57060-Q1, TPS57140-Q1, TPS57160-Q1, TPS54140-Q1, TPS54160-Q1, TPS54240-Q1, TPS54260-Q1

1.1 Schematics for PMP6990

![Figure 1. PMP6990 Schematic](image_url)
1.2 Bill of Materials for PMP6990

Table 1. PMP6990 BOM

<table>
<thead>
<tr>
<th>Designator</th>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
<th>Size and Package</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>3</td>
<td>0.015 µF</td>
<td>Capacitor, ceramic, 50-V, X7R, 10%</td>
<td>603</td>
<td>C1608X7R1H153K</td>
<td>TDK</td>
</tr>
<tr>
<td>C10</td>
<td>0.015 µF</td>
<td>Capacitor, ceramic, 50-V, X7R, 10%</td>
<td>603</td>
<td>C1608X7R1H153K</td>
<td>TDK</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>0.015 µF</td>
<td>Capacitor, ceramic, 50-V, X7R, 10%</td>
<td>603</td>
<td>C1608X7R1H153K</td>
<td>TDK</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>1</td>
<td>0.1 µF</td>
<td>Capacitor, ceramic, 50-V, X7R, 10%</td>
<td>603</td>
<td>C1608X7R1H104K</td>
<td>TDK</td>
</tr>
<tr>
<td>C12</td>
<td>1</td>
<td>1.5 nF</td>
<td>Capacitor, ceramic, 50-V, X7R, 10%</td>
<td>603</td>
<td>C1608X7R1H153K</td>
<td>TDK</td>
</tr>
<tr>
<td>C8</td>
<td>1</td>
<td>39 pF</td>
<td>Capacitor, ceramic, 50-V, COG, 5%</td>
<td>603</td>
<td>C1608COG1H390J</td>
<td>TDK</td>
</tr>
<tr>
<td>C7</td>
<td>1</td>
<td>1200 pF</td>
<td>Capacitor, ceramic, 50-V, COG, 5%</td>
<td>603</td>
<td>C1608COG1H122J</td>
<td>TDK</td>
</tr>
<tr>
<td>C1</td>
<td>2</td>
<td>4.7 µF</td>
<td>Capacitor, ceramic, 25-V, X7R, 10%</td>
<td>1206</td>
<td>C3216X7R1E475K</td>
<td>TDK</td>
</tr>
<tr>
<td>C3</td>
<td>2</td>
<td>4.7 µF</td>
<td>Capacitor, ceramic, 25-V, X7R, 10%</td>
<td>1206</td>
<td>C3216X7R1E475K</td>
<td>TDK</td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
<td>10 µF</td>
<td>Capacitor, ceramic, 16-V, X7R, 10%</td>
<td>1206</td>
<td>C3216X7R1C106K</td>
<td>TDK</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>220 µF</td>
<td>Capacitor, aluminum electrolytic, 25-V, 20%</td>
<td>0.315 inch</td>
<td>2S2L220M8x11.5</td>
<td>Rubycon</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>MBRA140LT3</td>
<td>Diode, Schottky, 1-A, 40-V</td>
<td>SMA</td>
<td>MBRA140LT3</td>
<td>ON Semi</td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td>1.5 µH</td>
<td>Inductor, SMT, 4-A, 33-mΩ</td>
<td>0.255 × 0.270 inch</td>
<td>IHP2525AH-01</td>
<td>Vishay</td>
</tr>
<tr>
<td>L2</td>
<td>1</td>
<td>4.7 µH</td>
<td>Inductor, SMT, 3-A, 77-mΩ</td>
<td>0.255 × 0.270 inch</td>
<td>IHP2525AH-01</td>
<td>Vishay</td>
</tr>
<tr>
<td>R10</td>
<td>1</td>
<td>0</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R8</td>
<td>1</td>
<td>1.87k</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R11</td>
<td>1</td>
<td>10</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R7</td>
<td>2</td>
<td>10k</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R9</td>
<td>1</td>
<td>20.5k</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R6</td>
<td>1</td>
<td>53.6k</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R5</td>
<td>1</td>
<td>78.7k</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>348k</td>
<td>Resistor, chip, 1/16-W, 1%</td>
<td>603</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>J1</td>
<td>1</td>
<td>ED1514</td>
<td>Terminal block, 2-pin, 6-A, 3.5-mm</td>
<td>0.27 × 0.25 inch</td>
<td>ED1514</td>
<td>OST</td>
</tr>
<tr>
<td>J2</td>
<td>1</td>
<td>ED1514</td>
<td>Terminal block, 2-pin, 6-A, 3.5-mm</td>
<td>0.27 × 0.25 inch</td>
<td>ED1514</td>
<td>OST</td>
</tr>
<tr>
<td>TP1</td>
<td>4</td>
<td>5001</td>
<td>Test point, black, through-hole color keyed</td>
<td>0.1 × 0.1 inch</td>
<td>5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP2</td>
<td></td>
<td>5001</td>
<td>Test point, black, through-hole color keyed</td>
<td>0.1 × 0.1 inch</td>
<td>5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP3</td>
<td></td>
<td>5001</td>
<td>Test point, black, through-hole color keyed</td>
<td>0.1 × 0.1 inch</td>
<td>5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP4</td>
<td></td>
<td>5001</td>
<td>Test point, black, through-hole color keyed</td>
<td>0.1 × 0.1 inch</td>
<td>5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>TPS54160DGQR1</td>
<td>IC, DC-DC converter, 60-V 1.5-A</td>
<td>MSOP-10</td>
<td>TPS54160DGQR1</td>
<td>Ti</td>
</tr>
</tbody>
</table>
1.3 PCB Layout

Figure 2. Top Assembly

Figure 3. Top-Layer Silkscreen and Routing
Figure 4. Layer 2 Routing

Figure 5. Layer 3 Routing
1.4 **R-C Snubber Added From PH to GND**

![Schematic of R-C Snubber Added](image)

Figure 7. With Snubber Added
2 Description and Setup for Radiated Emissions Measurements

PMP6990 Revision-A board was used for all radiated emissions testing. The test results confirm that the board can pass CISPR25, Class 4 according to the bill of materials listed in Table 1. In order to pass CISPR25, Class 5, an additional R-C snubber (R = 10 Ω, C = 1.5 nF) was added in parallel across diode D1. The snubber was used to slow down the rise and fall times of the switching voltages and currents generated by the PH pin which resulted in lower noise in the 30-MHz to 200-MHz range.

Figure 7 shows the buck-converter circuit using the R-C snubber. This snubber circuit is included in the new PMP6990 Revision-B reference board.

Section 2.1 and Section 2.2 list the setup conditions and test results.

2.1 Setup Conditions

Device under test (DUT)— PMP6990, Revision A using the TPS54160-Q1 device

Input voltage— Car battery, (BAT+) = 13.5 V, (BAT–) = GND

Switching frequency—f_{sw} = 2 MHz

Output voltage— V_{O} = 5 V

Load current— I_{O} = 1 A

Length of wire harness— (BAT+/BAT–) = 1.7 m

CISPR25 line-impedance stabilization networks (LISN) placed between BAT+/BAT– and wire harness

Wire harness and DUT are placed on 50 mm of insulation with respect to the test table.

Figure 8. Test Setup
2.2 Test Results

Figure 9. CISPR25 Bicon Horizontal Results
- No R-C Snubber

Figure 10. CISPR25 Bicon Horizontal Results
- With R-C Snubber

Figure 11. CISPR25 Bicon Vertical Results
- No R-C Snubber

Figure 12. CISPR25 Bicon Vertical Results
- With R-C Snubber
Summary

The TPS54160-Q1 device family passes the CISPR25 Class-4 and Class-5 Radiated Emissions required for automotive. Passing results can be achieved using careful components selection, placement, and PCB layout. In some cases, an R-C snubber is required to help further suppress high frequency noise.

PMP6990 EMC test board has been revised to Revision B, which includes footprints for the R-C snubber circuit. For more information on the PMP6990 Revision-B board go to www.ti.com.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio

Amplifiers
amplifier.ti.com

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-rfid.com

OMAP Applications Processors
www.ti.com/omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

TI E2E Community
e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated