Achieving Changeable Holding Current of a DRV88x Stepper Motor Driver

Alvin Zheng, Anda Zhang
Motor Driver Business Unit

ABSTRACT

This document is provided as a supplement to the DRV88x stepper motor drivers using external V_{REF} to realize output current control (DRV8818, DRV8812, DRV8813, DRV8821, DRV8823, DRV8824, DRV8825, DRV8828, and DRV8829; hereafter in this document referred to as DRV88x). The application report details a method to provide the changeable holding current function for a stepper motor.

Contents

1 Introduction .. 1
2 Current Regulation Principle ... 2
3 Changeable Holding Current Circuit ... 3
4 Application Example Based on DRV8818 ... 4

Figures

Figure 1. Current Regulation Analog Block ... 2
Figure 2. Changeable Holding Current Circuit .. 3
Figure 3. Output of Normal Operation ... 4
Figure 4. Output of Holding State .. 4
Figure 5. Normal Operation Waveform .. 4
Figure 6. Holding State Waveform ... 4
Figure 7. Schematic Application Example Based on DRV8818.. 5

1 Introduction

In some applications, stepper motors are expected to stop at a particular position and hold that position until the next step input. To ensure the position is not moved, the holding torque should be stronger than the load. For those stepper motors whose mechanical holding function can’t provide enough holding torque when facing heavy loads, extra holding current is necessary. This is called electric holding. Also, stepper motors can only be locked at a mechanical stepping angle (electric full step) when no current flows through windings during the holding state. For applications expecting to stop and restart at same position, electric holding is an ideal solution.
When performing electric holding, the stepper motor is still powered on in the holding state, there is a big current flowing through the windings. When the stepper motor stops, all the current turns into heat in the motor windings. Although a large holding current can generate enough torque to hold the load, it also produces high heat in the motor windings. In fact, the minimum current needed to hold the load is smaller than the current above. It is necessary to cut down the holding current to decrease the dissipation and meanwhile keep enough holding torque. So in a practical application, changeable holding current is preferred. For chips using external V$_{\text{REF}}$ to realize output current (DRV8818, DRV8812, DRV8813, DRV8821, DRV8823, DRV8824, DRV8825, DRV8828, and DRV8829), the current of the motor windings is set by the external V$_{\text{REF}}$ pin, and the holding current can be changed using an external circuit.

2 Current Regulation Principle

The current regulation of DRV88x chips is achieved by the external V$_{\text{REF}}$. Figure 1 depicts the typical analog block utilized to sample current information and disable the H-bridge accordingly.

![Current Regulation Analog Block](image)

The current regulation block continuously monitors motor winding current by sampling the voltage across the SENSE resistor which is proportional with the winding current. The voltage is amplified and then compared against the reference voltage. When the amplified SENSE resistor voltage is greater than the reference voltage, this signifies winding current is larger than the target current. Then, the device's logic disables the H-bridge and allows the current to decay through the internal structure. This process is repeated on a continuous basis thus obtaining a regulated current output.

The typical regulated current (I_{TRIP}) is in the form of:

$$I_{\text{TRIP}} = \frac{V_{\text{REF}}}{GAIN \times R_{\text{SENSE}}}$$

Where:

- I_{TRIP} - the current regulation set point
- V_{REF} - the analog reference voltage at the device's V_{REF} input
- $GAIN$ - the internal amplifier gain
- R_{SENSE} - the SENSE resistor in Ohms
3 Changeable Holding Current Circuit

The circuit in Figure 2 can realize changeable holding current function by using the CD74HC123. The CD74HC123 is a dual, retriggerable, monostable multivibrator, with reset. In this application, the input STEP comes from the step signal of the motor driver ICs, such as DRV8818. The output VREF is applied to the VREF pin of the motor driver ICs to achieve changeable holding current.

According to the principle of CD74HC123, when a pulse is applied to pin 1, there is a high output on pin 13, with a pulse width of 0.45 Rₓ × Cₓ starting at the falling edge of the signal on pin 1. When the signal frequency on pin 1 is bigger than 1 / (0.45 Rₓ × Cₓ), the high level on pin 13 maintains all the time. Figure 3 shows that by this time, the voltage on pin 13 stays high (Vcc), through a potential-divider network, an R4 × Vcc / (R4 + R2 // R3) output voltage is applied to the VREF pin of the motor driver IC.

When the stepper motor is in holding state, there will be no pulse on the STEP, the level on pin 1 will be low so the output voltage on pin 13 will be driven low (GND), hence the VREF voltage becomes Vcc × (R2 // R4) / (R2 // R4 + R3), as shown in Figure 4. In this way, the holding current of the stepper motor can be set by choosing suitable resistors.

So the VREF can be automatically changed when the stepper motor enters into holding state. Note: to get a good performance of normal operation, adjust the value of Rₓ and Cₓ based on a target STEP signal to achieve a constant high level on pin 13 when the stepper motor is in normal operation.

For example, if the frequency of the step signal is 1/15 Hz, that is, there are only four steps in one minute, then 1/15 > 1 / (0.45 Rₓ × Cₓ), so Rₓ × Cₓ must be larger than 33.3, so 10M can be selected for Rₓ, 10 µF can be selected for Cₓ.

![Figure 2. Changeable Holding Current Circuit](image-url)
4 Application Example Based on DRV8818

This example is a total solution of a stepper motor with changeable holding current function using the DRV8818. When the stepper is in normal operation, the V_{REF} of DRV8818 is about 2 V, when the stepper enters into the holding state, the V_{REF} automatically drops down to 1 V. Figure 5 and Figure 6 show the test results.

Figure 5 and Figure 6 are the V_{REF} and STEP waveforms of two-operation state, Figure 5 is a normal operation waveform and Figure 6 is the holding-state waveform. It can be found that V_{REF} is cut down to half in holding state compared to the normal operation.
Figure 7 shows the detailed schematic of the application example.

Figure 7. Schematic Application Example Based on DRV8818
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video
TI E2E Community	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated