Hardware Design Considerations for a Wireless LED-Based Display Design

Srivatsa Raghunath

ABSTRACT

Scoreboards have different purposes with various features. Scoreboards are typically used for displaying scores of a game played between two teams. These games can be a timed or an untimed event. The application described in this application report creates a multi-sport scoreboard that is cost efficient, portable, and easy to use. The display values on the scoreboard are transmitted wirelessly.

This application report describes the selection of the following: an appropriate LED display, a controller system, a communication system, and software for building the wireless LED-based scoreboard. Different techniques are included to drive the LED display from a microcontroller as well as some test results. This application report is only for displaying numerals on the scoreboard but the same concept can be applied to display alphabets. A similar concept can be extended to large LED-display modules with multiple 16 × 16 or 24 × 24 matrices.

Figure 1. Wireless Scoreboard Concept
Contents

1 LED Display .. 3
2 Selection Factors .. 3
3 LED Color Selection ... 5
4 Communication ... 6
5 System Block Diagram ... 6
6 Hardware Design ... 7
 6.1 Scoreboard Layout—Display Module ... 7
 6.2 IR Module ... 7
 6.3 Controller Module ... 8
7 Software .. 17
 7.1 MSP430 Assembly program ... 19
8 Conclusion .. 25
9 References ... 25

List of Figures

1 Wireless Scoreboard Concept .. 1
2 Distance Chart ... 4
3 Electromagnetic Spectrum .. 5
4 Absorbency .. 6
5 System Block Diagram ... 6
6 LED Display Board ... 7
7 IR Module .. 7
8 IR Modulation and Demodulation ... 7
9 Manchester Encoding .. 8
10 MSP430 Block Diagram and Pin Configuration ... 8
11 Typical LED Array .. 9
12 LED Array With Column Sink ... 10
13 LED Array With Row Sink ... 10
14 Column Scan ... 11
15 Row Scan .. 12
16 Pin Configuration of the 74HC595 .. 12
17 74HC595 Timing Diagram .. 13
18 Shift Register Connections .. 13
19 Schematic ... 14
20 System Block Diagram with the TLC59xx .. 15
21 Single TLC5940 Interface .. 15
22 Multiple TLC5940 Interface ... 16
23 Further Simplification Using the TLC5947 .. 17
24 Overall Software-Development Flow ... 18
25 Scorboard Display Results ... 25
1 LED Display

There are several factors that must be considered when selecting an LED display. These factors include:

- Location of use; either inside or outside
- Type of message content to be displayed
- Communication method used
- Viewing distance of the audience
- Character size
- Pitch
- Viewing Angle
- Viewing Time

2 Selection Factors

LED displays are specifically designed for either inside or outside use. Two main factors determine whether a display can be used inside or outside. The first factor is weather durability. Outside displays are designed to operate in extreme weather conditions while inside displays are not built to operate to the same environmental factors. Secondly, outside displays use different LEDs than inside displays. The LEDs used for outside displays are brighter to account for the varying lighting conditions. Inside displays do not have the same concerns and therefore are not as bright. A scoreboard that is used as an inside display for inside sporting events is selected for this application.

We need to evaluate how to use the sign by checking if we need only numeric or alpha numeric content to be displayed. Color display in the messages is required or monochrome is sufficient. Number of lines of messages, video messages, etc can also be looked into. These decisions also can increase or decrease the cost of the LED display. For example, a full color display is more expensive than a monochrome display. We’ve decided on monochrome, single line display of 7 x 24 LED matrix.

There are many different ways to communicate with the LED display. Understanding the requirements of the display in this regard will help in choosing the right technology for your application. Some installations may have specific requirements. We’ve chosen IR communication and the benefits of same are explained later in the note.

The distance between the sign and its viewers is the key factor in determining the best LED sign for any application. Considering two things about why it is crucial to choose a display based on where it will be located in relations to its audience. First, the distance from the viewer to the display will affect the minimum and maximum viewing distances. Second, the viewing distance also impacts the resolution or pitch.

Figure 2 shows the approximate distance that specific sized text can be read.
The following viewing distances can be inferred for the listed text sizes:
- 6" text has an approximate viewing distance of 30 m.
- 8" text has an approximate viewing distance of 150 m
- 12" text as an approximate distance of 210 m

Figure 2. Distance Chart

The distance from the sign to the viewers is a factor of determining the actual physical size of the sign. The farther the viewer is from the sign, the larger the letters must be in order to be readable. Large letters can increase the size of the sign. The general rule of thumb in determining the appropriate size for the sign is 1 inch for every 50 feet of viewing distance. For example, if you were traveling 60 MPH on a highway, and the sign is 500 ft away, the text letters should be at least 10-in tall to be legible. Likewise, if you are standing 100 ft away from a sign at street level, the letters only need to be 2 in tall to be legible. For this application, the display board is 8 in to 10 in.

Longer distances require less resolution, and shorter distances require higher resolution. Resolution, also known as pitch, plays a key role in the cost of the sign. The higher the resolution, the higher the cost of the sign. Pitch is the distance (typically in millimeters, mm) between pixels. Pitch is always measured from the center of one diode to the center of another diode. The smaller the pitch number, the higher the resolution quality. Larger pitch numbers indicate a lower resolution. A pixel can be one single diode or can consist of a cluster of diodes running off the same circuit. Certain pitches are better for certain distances. For example, a sign next to a large road that is only viewed from far away only requires a low resolution because of the distance from which the sign is being viewed. A sign viewed from street level, such as one in front of a school, requires a higher resolution because the sign will be viewed from a shorter distance.

The typical viewing angle of electronic message centers is 90°. If the target audience is moving, a viewing time element is introduced. The size of characters, the viewing angle of the display, and the speed of the target audience all translate into one important element—time. The time it takes for the audience to read and comprehend a message before a new message is displayed must be considered. In general, 5 s is the length of time taken to read and comprehend ten characters of text.
The remaining two selection factors are for displays with moving audiences. Because this application is for a scoreboard, the audience is at rest and therefore typical viewing angles and viewing time are applied. A viewing angle of 150° (75° in each direction off of the center) means that as the target audience draws closer to the display, the display is still readable and increases viewing time.

3 LED Color Selection

Figure 3 shows the electromagnetic spectrum. A broad range of wavelengths with a visible-light spectrum at 380 nm to 750 nm and infrared light spectrum at 750 nm to 1 mm is used in this application.

Figure 3. Electromagnetic Spectrum
The color red has the broadest range of visible light (620 nm to 750 nm). The color yellow has the second broadest range of visible light. Human eyes see the colors red and yellow the best because of cones in the human retina. The scoreboard in this application displays yellow numbers and is clearly visible at a minimum of 30 ft.

4 Communication

Infrared (IR) light-based communication is selected because a computer is not used to program the sign. IR light-based communication is a simple, easy, and inexpensive method to program the sign. The distance between the remote and the display is less than 20 ft and the front of the sign are easily accessed. The message is changed infrequently and therefore storing all of the possible messages is not necessary.

For this application, an IR LED with a range of 850 nm to 950 nm and an acute beam angle was selected.

5 System Block Diagram

Figure 5 shows the complete system block diagram.
6 Hardware Design

6.1 Scoreboard Layout—Display Module

The board used in this application is a 7 × 24 LED display board. The LEDs are controlled by two SN74HC595 8-bit serial-in, serial or parallel-out shift register. This technique is one of the most basic techniques. Other techniques are discussed at the end of the application report.

![Figure 6. LED Display Board](image)

6.2 IR Module

A standard TV remote is used as IR transmitter. The TSOP1738 device is used as a receiver for infrared remote control systems. Figure 7 shows the TSOP1738 block diagram.

![Figure 7. IR Module](image)

Again, the IR module is a basic technique for wireless implementation. Other methods such as Bluetooth®, LPRF, and WiFi are discussed toward end of the application report.

![Figure 8. IR Modulation and Demodulation](image)

Manchester encoding is used for transmission. Each bit consists of two half-bits that always have a different level. For example, a transition occurs from mark-to-space or space-to-mark. The polarity of the transition defines the logical level, for example mark-to-space denotes logic 1, space-to-mark denotes logic 0. See Figure 9.
Alternatively, see TI’s CC2540 and CC2541 based BLE devices or the CC2530 and CC2500 based LPRF devices for remote control options. Complete reference designs are available for these remote control designs online at www.TI.com/TIDesigns.

6.3 Controller Module

The MSP430™ microcontroller (MCU) device is selected to interface between the IR communication module and the display module. Figure 10 shows the block diagram for the MSP430 device.
The MSP430 LaunchPad™ development tool is used for testing purposes.

Using a Shift Register

![Figure 11. Typical LED Array](image)

An LED array contains LEDs arranged in a grid of rows and columns. This matrix arrangement helps to control many LEDs with just a few output pins. The number of LEDs that can be controlled is the product of the number of columns and rows. The most common arrangement is an eight-by-eight matrix which has a total of 64 LEDs from 16 output pins.

The importance of the matrix configuration is that not all LEDs can be controlled at the same time. Only the LEDs located on one row or column can be turned on at a time. The wiring of the matrix determines if either a row or a column is controlled. Only one setting can be used at a time. However, the LEDs in each row or column can be turned on quickly enough so that all of the rows or columns appear to be on all at the same time. This quick turn on occurs through the persistence of vision of the eye and, if it occurs quickly enough, the matrix will not appear to flicker.

In this example, both ends of the LED matrix are under control. The LED turns on when the anode is high and the cathode is low. If the cathode on the two columns is low then two LEDs on the row light up.

NOTE: The top row of LEDs must be the source supply of the current for two LEDs where as the columns only have to connect to ground and sink only the current for one LED.

A matrix is created in two ways either by row scanning or column scanning. Data is supplied to one side of the matrix and a walking bit is applied to the adjacent side. A walking bit is a sequence where there is one different bit that changes position during each step of the sequence. Therefore a walking one is a line of bits that are all set to 0 except one. The position of the bit set to 1 changes at each step in the following example:

```
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
```

The data of this bit pattern defines which pattern the matrix shows when the LEDs are turned on as shown in Figure 12. The walking bit is a walking 1 on the rows and at each step the column is fed with data that defines the pattern of LEDs shown in Figure 12. In this example each row driver must supply the current for up to eight LEDs at any one time, where as the columns only have to sink the current for one LED.
The column scan is used in this example. The walking bit is a walking 0 and the data that defines the pattern is applied to the rows. In this example the row only sources the current for one LED at any one time where as the column must sink the current of up to eight LEDs.

To drive a matrix with an MSP430 device, the application must include an external driver for the current-source or current-sink. The current through the LED must be limited. The simplest way of limiting the current is with a series resistor. However, the resistor must be located in the row that only takes the current for one LED (such as a column scan). If the resistor is not located in this row the brightness of the LEDs changes based on the number of LEDs that are on at any one time. The simplest arrangement is a column scan with an external current sink.
The column sink circuit uses TI's ULN2803 device which consists of eight Darlington drivers conveniently in one package. The collective current that this can be switched is about 650 mA at any one time which allows a maximum current of 80 mA per LED (see Equation 1). In practice, the LED current is limited by the amount of current can be sourced from the MSP430 row pins.

\[
650 \text{ mA} / 8 = 80 \text{ mA}
\]

where

- 650 mA is the collective current that the device can switch

For row scan matrix an external current-source driver is used. The row-source circuit can use a high-sided driver such as TI's LMD18400 device.
The availability of the pins in a microcontroller can be a constraint because of the variety of functions that the pins can perform. To lower the number of pins, a demultiplexer device such as the SN74LS42 decoder or the SN74LS145 decoder can be used. When using a demultiplexer device, only three rows are required to select which one, out of eight rows, goes low. If a low occurs on a row and one column then the row on each device can be common the enabled which reduces the number of rows used to control an eight-by-eight matrix down from sixteen rows to seven rows. Shift registers can also be used to drive the matrix which further reduces the pin count down to three rows if two rows are cascaded. This approach requires a longer time to refresh and typically a shift register can only source or sink enough current for one LED.

The SN74HC595 shift register has an 8-bit storage register and an 8-bit shift register. Data is written to the shift register serially and then latched onto the storage register. The storage register then controls eight output lines.

Pin 14 (DS) is the data pin. On some device data sheets, this pin is called SER.

Figure 15. Row Scan

Figure 16. Pin Configuration of the 74HC595
When pin 11 (SH_CP or SRCLK on some data sheets) goes from low to high the value of the DS pin is stored in the shift register and the existing values of the register are shifted to make room for the new bit.

Pin 12 (ST_CP or RCLK on some data sheets) is held low while data is written to the shift register. When the ST_CP pin goes high the values of the shift register are latched to the storage register which are then outputted to pins 1 through 7 (Q0 through Q7).

The timing diagram in Figure 17 shows how to set the Q0 through Q7 output pins to 11000011, assuming starting values of 00000000.

![Figure 17. 74HC595 Timing Diagram](image)

Figure 18. Shift Register Connections

Figure 19 shows the overall schematic of the application.
The use of the TLC5940 (16 channel) device or TLC5947 (24 channel) device in the application can also simply the design.
As shown in Figure 21, Figure 22, and Figure 23, the overall system is simplified further.
Figure 22. Multiple TLC5940 Interface
7 **Software**

The development environment used in the application is Code Composer Studio 4 (CCS4). The complete sample program was written in assembly language.

After the assembly program is compiled and the build is complete, a .hex file is generated in the .exe folder in the project directory. Then the .hex is programmed to the MSP430 device.
Figure 24. Overall Software-Development Flow
7.1 **MSP430 Assembly program**

The following code shows the complete MSP430 assembly program.

```
.include "msp430g2x31.inc"
.def temp = R16
.def num_1 = R18
.def num_2 = R19
.def num_3 = R20
.def num_4 = R21
.def color = R22
.def row = R23
.def temp_1 = R24
.def temp_2 = R25
.def temp_3 = R26
.def temp_4 = R27
.def data = R28
.def buffer = R15
.def bug = R14
.def num_of_bits = R13
.def threshold = R12
.def code = R11

//----using "Z" r31:30 memory pointer
.org 0
  jmp main
.org 0x0006
  jmp ir_interrupt
//____________________________________________________
main:
  ldi temp,LOW(RAMEND)
  out spl,temp
  ldi temp,high(RAMEND)
  out sph,temp
  sei //enabling all interupts
  ldi temp,0x00 //portb as input port
  out ddbb,temp
  ldi temp,0x20 //enabling INTR_2 interrupts
  out gicr,temp
  ldi temp,0x00 //INTR_2 as -ve edge triggered interrupt
  out mcucr,temp
  ldi temp,0xff //portd as output port
  out dddc,temp
  out ddbd,temp //port a as output port for display
  ldi num_1,0x00
  ldi num_2,0x00
  ldi num_3,0x00
  ldi num_4,0x00
  //________________________________________________________________________________________________
again:
  cbi porta,3 //enable output buffer
  call bit_delay //reset all data
  sbi porta,4
  mov data,num_1
  call display_char //________________
  mov data,num_2
  call display_char //________________
  mov data,num_3
  call display_char
```
```assembly
//________________
mov data,num_4
    call display_char
//________________
ldi temp,0xff
out portd,temp
wait_for_intr   :sbis pinb,2
    rjmp outside_loop
    rjmp wait_for_intr
//wait_for_intr   :rjmp wait_for_intr
outside_loop    :call ir_interupt
    jmp again

//____________________________

display_char    :ldi zh,high(d1)
    ldi zl,low(d1)
    lsl data    //data X 2
    lsl data    //data X 4
    lsl data    //data X 8
    add zl,data //calculating offset for lookup
table
    ldi coloum,0x06
nxt_coloum      :
    ldi row,0x08
    lpm buffer,z+
nxt_bit         :
    rol buffer
    brcs send_1
    cbi porta,0    //data to be sent = 0
    jmp latch_data
send_1          :
    sbi porta,0    //data to be sent = 1
latch_data      :
//____________________________
    cbi porta,1
    call bit_delay
    sbi porta,1
    call bit_delay
    cbi porta,1
//____________________________
    cbi porta,2
    call bit_delay
    sbi porta,2
    call bit_delay
    cbi porta,2
//____________________________
    dec row
    brne nxt_bit
    dec coloum
    brne nxt_coloum
    ret
//____________________________

increment_team_1 :
    ret
//____________________________

increment_team_2 :
    ret
//____________________________
```
ir_interrupt
:ldi temp,0x00 //disabling INTR_2 interrupt
out gicr,temp
ldi temp,4
out portd,temp
ldi temp,0x08
mov num_of_bits,temp
ldi temp,100
mov threshold,temp
11 :sbis pinb,2
rjmp 11
12 :sbic pinb,2
rjmp 12
ldi temp_1,0x00
13 :sbic pinb,2
rjmp compare
inc temp_1
nop
nop
nop
jmp 13
compare :
cp threshold,temp_1
breq zero_detected //branch if carry set
sec
rjmp 1
zero_detected :clc
l_4 :rol code
dec num_of_bits
brne l_4
//**
mov temp,code
cpi temp,0b11111110
brne check_2
//________________________key_1_detected
ldi temp,0x01
out portd,temp
// stop: rjmp stop
cpi num_1,0x02
brne incr_1
cpi num_2,0x01
brne incr_1
vldi num_1,0x00
ldi num_2,0x00
ldi num_3,0x00
ldi num_4,0x00
jmp display
incr_1 :cpi num_2,0x09
brne inc_num_2
ldi num_2,0x00
inc num_1
jmp display
inc_num_2 :inc num_2
//______________________________
jmp display
check_2 :cpi temp,0b01111110
brne check_3
//______________________key_2_detected
ldi temp,0x02
out portd,temp
//_______________________________
cpi num_3,0x02
brne incr_2
cpi num_4,0x01
brne incr_2
ldi num_1,0x00
ldi num_2,0x00
ldi num_3,0x00
ldi num_4,0x00
jmp display

incr_2:
:cpi num_4,0x09
brne inc_num_4
ldi num_4,0x00
inc num_3
jmp display

inc_num_4:
:inc num_4
jmp display

//###
check_3:
:cpi temp,0b10111110
brne display
//__________key_3_detected
ldi temp,0x03
out portd,temp
//______________________
ldi num_1,0x00
ldi num_2,0x00
ldi num_3,0x00
ldi num_4,0x00

display:
call delay
ldi temp,0x05
out portd,temp
call delay
// 16 :jmp 16
// ldii temp,0x20 //enabling INTR_2 interrupt
//
// out gicr,temp
ret

//__

bit_delay:
:ldi temp_2,0x02
//bit_delay_1 :
:ldi temp_3,0xf0
//bit_delay_2 :
:ldi temp_4,0xff
//bit_delay_3 :
brne bit_delay_3
dec temp_4
//
// brne bit_delay_2
//
// brne bit_delay_1
ret

//__

delay:
:ldi temp_2,0x02
delay_1:
:ldi temp_3,0xff
delay_2:
:ldi temp_4,0xff
delay_3:
:dec temp_4
brne delay_3
dec temp_4
brne delay_2
dec temp_2
brne delay_1
ret

.org 0x200
d: .db
0x82,0x7c,0x7c,0x7c,0x82,0xff,0x60,0x00,0x00,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
The following code in C, which uses the TLC5940 device, is similar to the previous code.

```
/*
 * TLC5940 Demo for MSP430
 * Only PWM functionality is demonstrated
 * Dot correction function is not used
 * Rotates a pattern of decreasing light intensity on LEDs - OUT0..OUT15
 * To pause, press and hold the S2 button on the launchpad
 * Launchpad LED1 stays on, LED2 flashes on every PWM cycle
 */
#include <msp430g2231.h>
// Pin mapping
#define GSCLK_PIN BIT7 // to TLC5940 pin 18
#define SIN_PIN BIT1 // to TLC5940 pin 26
#define SCLK_PIN BIT2 // to TLC5940 pin 25
#define BLANK_PIN BIT4 // to TLC5940 pin 23
#define XLAT_PIN BIT5 // to TLC5940 pin 24
#define LED1_PIN BIT0 // Launchpad LED1 (Red)
#define LED2_PIN BIT6 // Launchpad LED2 (Green)
#define S2_PIN BIT3 // Launchpad S2 button
// Number of daisy-chained TLC5940 ICs
#define TLC5940_N 1
// Useful macros
#define setHigh(n) (P1OUT |= n)
#define setLow(n) (P1OUT &= ~n)
#define pulse(n){ setHigh(n); setLow(n); }
// PWM cycles to wait before rotating gsData
#define DELAY 3
// Grayscale values for each channel in reverse order
unsigned int gsData[] = {
    0, // Channel 15
    0, // Channel 14
    0, // Channel 13
    0, // Channel 12
    BIT1, // Channel 11
    BIT2, // Channel 10
    BIT3, // Channel 9
    BIT4, // Channel 8
    BIT5, // Channel 7
    BIT6, // Channel 6
    BIT7, // Channel 5
    BIT8, // Channel 4
    BIT9, // Channel 3
    BITA, // Channel 2
    BITB, // Channel 1
    BITB | BITA | BIT9 | BIT8 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 // Channel 0
};
// Update gs during PWM cycle?
unsigned char gsUpdateFlag=1;
void init(void)
{
    P1DIR |= GSCLK_PIN | SIN_PIN | SCLK_PIN | BLANK_PIN | XLAT_PIN; // Set output
    setHigh(GSCLK_PIN);
    setHigh(SIN_PIN);
    setHigh(SCLK_PIN);
    setHigh(XLAT_PIN);
    setHigh(BLANK_PIN);
    void GS(void)
```
unsigned int Data_Counter = 0, GSCLK_Counter;
setLow(BLANK_PIN);
for (GSCLK_Counter = 0; GSCLK_Counter < 4096; GSCLK_Counter++)
{
 if (gsUpdateFlag && (! (Data_Counter > TLC5940_N * 192 -1)))
 {
 // Check and load next data bit, MSB first, 12 bits per value
 if (gsData[Data_Counter / 12] & (BITB >> (Data_Counter % 12))
 {
 setHigh(SIN_PIN);
 if (gsData[Data_Counter / 12] & (BITB >> (Data_Counter % 12)))
 setHigh(SIN_PIN);
 pulse(SCLK_PIN);
 Data_Counter++;
 P1OUT |= LED2_PIN; // LED2 on
 }
 else
 P1OUT &= ~LED2_PIN; // LED2 off
 pulse(GSCLK_PIN);
 }
 setHigh(BLANK_PIN);
 pulse(XLAT_PIN);
 gsUpdateFlag = 0; // PWM update finished, reset gsUpdate flag
}
void main(void)
{
 int i, t;

 WDTCTL = WDTPW + WDTHOLD; // Disable watchdog timer
 // Set DCO to ~15.25 MHz as per datasheet
 // Does not use calibration values
 BCSCTL1 = RSEL0 | RSEL1 | RSEL2 | RSEL3; // RSELx = 15
 DCOCTL = DCO0 | DCO1; // DCOx = 3, MODx = 0
 init();
 P1DIR |= LED1_PIN | LED2_PIN; // Enable Launchpad LEDs for output
 P1OUT |= LED1_PIN; // LED1 on
 P1OUT &= ~LED2_PIN; // LED2 off
 for (;<img src='http://forum.43oh.com/public/style_emoticons/<#EMO_DIR#>/icon_e_wink.gif' class='bbc_emoticon' alt=';)' /> // Loop forever
 {
 for (i=0; i < DELAY; i++)
 GS();
 if (P1IN & S2_PIN) // If S2 not pressed
 {
 // Rotate gsData
 t = gsData[0];
 for (i = 0; i < 15; i++)
 gsData[i] = gsData[i+1];
 gsData[15] = t;
 gsUpdateFlag = 1; // Update gs on next PWM cycle
 }
 }
}
7.1.1 Design Results

Figure 25. Scorboard Display Results

8 Conclusion
A 7-x-24 LED matrix display and an IR receiver were successfully interfaced to the MSP430 device. The resulting scoreboard design is a low-cost wireless application.

9 References
2. LED Display System Module Using Cascading TLC5940 Devices, SLVA242
3. LED Driver – Paralleled Outputs Provide High-Current Outputs, SLVA253
4. TLC5940 One-Wire Control – Eliminating Microprocessor Control for Integrated LED Driver, SLVA259
5. MSP430 Assembly Language Tools v 4.3 User’s Guide, SLAU131
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party or the patent holder or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designated for use in military/aerospace applications or environments. Buyer acknowledges and agrees that military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated