Reduce Diode Losses in Redundant Systems With Integrated Power MUXes

Dinesh Kumar

ABSTRACT
This document demonstrates how diode implementation with the TPS25942A active ORing feature effectively replaces a lossy Schottky diode. Inrush current limit and overload, and the short circuit and over/undervoltage fault protections are also addressed.

Contents
1 Introduction ... 1
2 Auto-Power Multiplexing .. 3
3 Conclusion .. 7
4 References .. 7

List of Figures
1 Multiple Power Sources Muxing With Diodes .. 2
2 Example Schematic of an Auto ORing Implementation ... 3
3 Active ORing Changeover from \(V_{\text{MAIN}} (V_{\text{IN1}} = 12 \text{ V}) \) to \(V_{\text{AUX}} (V_{\text{IN2}} = 3.3 \text{ V}) \) 4
4 Active ORing Changeover from \(V_{\text{AUX}} (V_{\text{IN2}} = 3.3 \text{ V}) \) to \(V_{\text{MAIN}} (V_{\text{IN1}} = 12 \text{ V}) \) 4
5 Multiple Power Supply Active ORing Configuration ... 5
6 Example Schematic of Priority Power Muxing Implementation 6
7 Priority Multiplexing Change Over From \(V_{\text{MAIN}} (V_{\text{IN1}} = 3.3 \text{ V}) \) to \(V_{\text{AUX}} (V_{\text{IN2}} = 12 \text{ V}) \) 6
8 Priority Multiplexing Changes Over From \(V_{\text{AUX}} (V_{\text{IN2}} = 12 \text{ V}) \) to \(V_{\text{MAIN}} (V_{\text{IN1}} = 3.3 \text{ V}) \) 7

1 Introduction
Many power management applications use Schottky diodes for the parallel operation of multiple power sources. This type of power redundancy is often found in systems with solid-state drives (SSDs), hard disk drives (HDDs), programmable logic controllers (PLCs), peripheral component interconnect express (PCIe) cards, network and graphic cards, and some others used in automotive, industrial, personal electronics, and telecommunications infrastructure applications. The diodes do a great job of isolating redundant power sources to keep the system operational in the event that any one power source fails, while also preventing current flow from one supply to the other.

The diode power-muxing configuration gives a seamless transition from one voltage rail to the other (Figure 1). However, system and circuit designers need to find methods to reduce circuit losses associated with these diodes. The diode also reduces the available supply voltage at the system input. This becomes critical for the lower side of the input operating voltage range. A 0.5-V drop across a diode represents four percent of the power consumption in a 12-V system.
A second consideration is overcurrent protection to prevent bus droops during overload events and short circuits. Maintaining load voltage above the undervoltage level prevents system interrupts while reducing downtime and increasing customer satisfaction.

For a number of years there has been a trend moving away from MUXing with power diodes and moving towards MUXing with ideal diodes. An Ideal diode is a circuit that “makes a FET act like a diode.” Although somewhat more complex than a simple diode, the ideal diode can significantly improve system efficiency and consume less power supply margin. There are many controllers in the market today that can make a FET behave like a diode. There are also integrated devices that have a FET and a controller in a single package. Typically these are available for lower voltages and currents. The devices in the spotlight of this article contain an ideal diode as part of a total, integrated solution.

To determine power loss in a diode simply multiply current by V_F, the forward voltage drop of the diode. V_F is temperature- and current-dependent, and typically ranges from 0.3 to 0.7 V.

To calculate power loss in a FET, simply multiply $R_{DS(ON)}$ by the square of the load current. $(I^2 \times R_{DS(ON)})$. Modern MOSFETs have very low on-state resistance, $R_{DS(ON)}$, which results in a low-voltage drop even under load. In turn, this results in much lower power losses than the equivalent system using diodes. This means greater system efficiency, more available power supply margin, and fewer thermal issues during design.

Effective and reliable active ORing is not as simple as it may appear and comes with a few tradeoffs. When the MOSFET is turned ON by its associated controller, the current can flow in either direction through its channel. Should the input power source fail due to a short circuit or voltage drop at the input, this will not prevent a reverse-current flow. A longer period of reverse current will discharge the output bus voltage, causing system-level damage. These conditions mandate that the active ORing control be capable of detecting the reverse current accurately, and turn OFF the MOSFET immediately.

An example of an intelligent ORing control that provides seamless transition between two power sources is shown in Figure 2. This solution gives a distinctive feature set of true-reverse current blocking, auto-forward conduction, and fast switchover.
2 Auto-Power Multiplexing

In addition to the best possible diode implementation, the schematic in Figure 2 limits inrush current and protects each rail from potential overload, short circuit, and over/undervoltage faults. Now take a look at the operation and experimental results of this implementation.

When the main supply, V_{IN1}, drops more than 10 mV below V_{OUT}, the internal FET (master device) is turned OFF in less than 1 μs. This blocks the reverse current flow from V_{OUT} to V_{IN1}.

As the forward voltage drop between V_{IN2} and V_{OUT} grows larger than 100 mV, the auxiliary supply, V_{IN2}, turns ON the internal FET (slave device) in less than 4 μs. This creates a seamless transition between two voltage rails (Figure 3). Such swift switchover keeps the load powered with no undervoltage transients, which is often the case with diodes. However, this happens at a much lower loss compared to diode ORing.

The I_{MON1} shows the current drawn from the V_{IN1} power supply, and I_{MON2} represents current drawn from the V_{IN2} supply. These waveforms provide a clear indication of the power drawn during changeover from one rail to the other.
Figure 3. Active ORing Changeover from V_{MAIN} ($V_{\text{IN1}} = 12$ V) to V_{AUX} ($V_{\text{IN2}} = 3.3$ V)

Figure 4 depicts an active ORing changeover from V_{MAIN} ($V_{\text{IN1}} = 12$ V) to V_{AUX} ($V_{\text{IN2}} = 3.3$ V), and V_{OUT} jumps to 3.3 V. Note the load-current transfer from 12 V (I_{MON1}) to 3.3 V (I_{MON2}).

Figure 3 shows the changeover (ORing) from V_{AUX} ($V_{\text{IN2}} = 3.3$ V) to V_{MAIN} ($V_{\text{IN1}} = 12$ V). In active ORing, the priority is always to go with the higher voltage rail (for example, 12 V). Whenever this rail is active, the load current is transferred to the 12-V rail (I_{MON1}). Figure 2 can be extended for multiple power supply active ORing configurations, as is shown in Figure 4.

Figure 4. Active ORing Changeover from V_{AUX} ($V_{\text{IN2}} = 3.3$ V) to V_{MAIN} ($V_{\text{IN1}} = 12$ V)

The load-feeding priority by default with diode ORing, and even with active ORing, always has a higher voltage input. For example, consider the case shown in Figure 1 where the V_{IN1} rail is 3.3 V and the V_{IN2} rail is 12 V. These two rails are ORed with diodes. The 12 V always feeds the load until it falls below 3.3 V, therefore, the 12-V rails have priority over the 3.3-V rail.

What if the system requires that a 3.3 V (V_{IN1} rail) power the load until this rail voltage is within 2.7 V to 3.5 V? If the V_{IN1} rail voltage is out of this range, then the V_{IN2} rail needs to power the load. However, this is not possible with a Schottky ORing diode, nor with an active ORing mechanism.

A priority power multiplexing implementation is shown in Figure 5 using two devices (master and slave). Now look at a priority power-muxing operation and its experimental results.
Figure 5. Multiple Power Supply Active ORing Configuration

When mains power, V_{IN1} is present and the master device in the V_{IN1} path powers the V_{OUT} bus. Irrespective of auxiliary power, V_{IN2} is greater than or less than V_{IN1}.

Once the voltage on the V_{IN1} rail falls below the user-defined threshold (can be programmed by R6 and R7 in Figure 5), the master device on V_{IN1} issues a power-good signal (PG) to the slave device on V_{IN2} (to OVP pin), to switch over to auxiliary power, V_{IN2}, to feed power to the output. The transition happens seamlessly in less than 125 μs, with negligible output voltage droop on the output bus. Combining the output capacitance, C_{OUT}, with larger load current demands minimizes the output voltage drop (V_{DROP}) during changeover time. The required C_{OUT} can be calculated using Equation 1.

$$C_{OUT} = \frac{I_{LOAD} \times 125 \mu s}{V_{DROP}}$$

When V_{IN1} recovers, the device connected to V_{IN1} is turned ON at a defined slew rate and the device in V_{IN2} path turns OFF. This allows a seamless transition from auxiliary to main voltage supply with minimal droop and without shoot-through current. Figure 7–Figure 8 show the smooth changeover from 3.3-V to 12-V rail, and vice versa.
Figure 6. Example Schematic of Priority Power Muxing Implementation

Figure 7. Priority Multiplexing Change Over From V_{MAIN} ($V_{IN1} = 3.3$ V) to V_{AUX} ($V_{IN2} = 12$ V)

Figure 7 shows a changeover from V_{MAIN} ($V_{IN1} = 3.3$ V) to V_{AUX} ($V_{IN2} = 12$ V), and how VOUT jumps to 12 V when 3.3 V collapses. See the load-current transfers from 3.3-V (I_{MON1}) to 12-V rail (I_{MON2}).
Conclusion

Figure 8 shows the priority changeover from V_{AUX} ($V_{IN2} = 12\text{V}$) to V_{MAIN} ($V_{IN1} = 3.3\text{V}$), even though a 12-V supply is present at V_{IN2}. Still, when V_{MAIN} ($V_{IN1} = 3.3\text{V}$) becomes active, the load gets power from the 3.3-V rail. Note the transfer of the load current from 12-V rail (I_{MON2}) to 3.3-V rail (I_{MON1}). This shows that the 3.3-V rail has priority over the 12-V rail.

![Figure 8. Priority Multiplexing Changes Over From V_{AUX} ($V_{IN2} = 12\text{V}$) to V_{MAIN} ($V_{IN1} = 3.3\text{V}$)](image)

3 Conclusion

Diode implementation with the TPS25942A active ORing feature effectively replaces a lossy Schottky diode. Also addressed are the inrush current limit and overload, and the short circuit and over/undervoltage fault protections. A priority power multiplexing feature allows the designer to decide the priority of one rail over another, regardless of the voltage level of the input rails.

4 References

Download the TPS25942x/44x 2.7V-18V, 5A eFuse Power MUX with Multiple Protection Modes TPS25942A datasheet ([SLVSCE9](#)).
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti.com/rapid</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated