ABSTRACT

In some applications, it may be desired to have a constant dv/dt ramp on the output of the TPS2471x to ensure a constant inrush current. This is often accomplished by adding a capacitor to the gate. This application note describes several considerations that must be taken into account when using this approach.

1 Circuit Overview and Considerations

Fundamentally, the dv/dt control is implemented by adding a capacitor from gate to ground as shown below. The gate pin sources a limited current so the gate pin slowly ramps up. Thus V_{OUT} will slowly ramp and follow the gate. If the load is capacitive the current will be constant and proportional to the dv/dt of V_{OUT}.

![Figure 1. Operation of Power Limit Engine](image1)

![Figure 2. Typical Waveforms when Using Soft Start](image2)
Before switching to this method it’s important to take into account some of the drawbacks and limitations of this approach.

- There should not be any series resistance between C_{SS} and the Gate pin. Adding this resistance would lead to undesired behavior during hot short tests.
- This approach results in a slower short circuit response because now the Hot Swap needs to discharge C_{SS}, which can be a lot bigger than the C_{GS} of the FET.
- This usually requires a larger timer than a typical power limit based start-up approach. Hence the FET is stressed more during a start into short or a hot short test condition.
- The gate sourcing current will vary depending on the difference between $V_{(SNS,CL)}$ (target current limit or power limit voltage) and the actual $V_{(SNS)}$. This has to be taken into account when working on such designs.

2 Recommended Design Procedure

With the above limitations in mind, if soft start is still desired the following procedure can be used. Note that more detailed design procedure can be performed with a spreadsheet, but this provides a simpler approach that will ensure a robust design.

- First pick a soft start capacitor that will provide the desired typical output slew rate. Suppose a 1 V/ms ramp rate was desired. Then the C_{SS} can be computed to 30 nF (30 µA/(1 V/ms)).
- Then the inrush current should be computed, which would depend on the output cap. If the output capacitor is 1,000 µF, the inrush current will be 1 A (1 V/ms x 1000 µF).
- Next the power limit must be set sufficiently large to ensure that there is sufficient gate current throughout the start-up process. In general, it is recommended to compute the $V_{(SNS,PLIM,MIN)}$ using Equation 1. The 6 mV is the recommended over-drive to ensure 20 µA of sourcing current over process and temperature. Assuming a 1-mΩ sense resistor, $V_{(SNS,PLIM,MIN)}$ of 7 mV is computed.

$$V_{(SNS,PLIM,MIN)} = 6 \text{ mV} + I_{\text{INR}} \times R_{\text{SNS}} = 7 \text{ mV} \tag{1}$$

- Based on this, the lowest value the current should be regulated to is 7 A (7 mV/ 1 mΩ). For a $V_{(IN,MAX)}$ of 14 V, this would imply that the power limit should be set to at least 7 A x 14 V = 98 W.
- Next, it is important to compute how long the timer will run. Note that the timer runs while V_{GS} is less than 5.9 V. In addition to C_{SS}, the C_{GS} of the MOSFET needs to be charged as well. Continuing with the example above and assuming a C_{GS} of 10 nF, a conservative value of the timer run time can be computed as follows;

$$t_{\text{TIMER, RUN}} = \frac{(V_{(IN,MAX)} + 5.9 \text{ V}) \times C_{SS} + 5.9 \text{ V} \times C_{GS}}{20 \mu A} = \frac{(14 \text{ V} + 5.9 \text{ V}) \times 30 \text{ nF} + 5.9 \text{ V} \times 5 \text{ nF}}{20 \mu A} = 31.3 \text{ ms} \tag{2}$$

- Finally the timer should be set to have some margin compared to timer runs. 25% margin is recommended. In this case, a timer of at least 39 ms would be recommended.

3 References

TPS2471x 2.5V to 18V Positive Voltage Power-Limiting Hot-Swap Controllers (SLVSAL2)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party patent or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated