Effective System ESD Protection Guidelines
TPS251x USB Charging Port Controllers

Eric Wright
Linear Power/Power Interface

ABSTRACT
IEC 61000-4-2 electro-static discharge (ESD) protection of USB charging ports is a necessary system requirement for most products. The USB D+ and D– signals from the charging port controller make direct contact with a potentially charged USB cable and the discharge of energy from the cable to the product can damage the controller. The controller D+, D–, and even VBUS signals must have some form of ESD protection added to the application circuit. This document discusses the design and printed circuit board (PCB) layout of the ESD protection circuitry.

1 Description
The TPS251x family (TPS2511/11Q1, TPS2513/13A/13AQ1, TPS2514/14A/14AQ1) of USB charging port controllers do not incorporate internal IEC 61000-4-2 ESD protection. In order to meet IEC 61000-4-2, level 4, external circuitry must be used. In some cases, protection of the D+ and D– signals starts with a transient voltage suppressor (TVS) and may include a choke. Protection of VBUS can usually be accomplished through the use of the USB-required VBUS capacitor, C_{PORT}. The basic protection scheme is shown in Figure 1.

![Figure 1. Basic USB ESD Protection Circuit](image-url)
2 Choosing the TVS

The absolute maximum voltage rating of the TPS251x DP_IN and DM_IN pins with respect to GND ranges from –0.3 V to the lower of \(V_{IN} + 0.3 \) V or 5.7 V. For example, if \(V_{IN} = 5 \) V, then the maximum rating is 5.3 V. The TVS should clamp the voltage on DP_IN and DM_IN within this voltage range for reliable operation in the presence of ESD surges.

The TVS configuration shown in Figure 1 is one example of an ESD diode array which can clamp D+ and D– between GND and VBUS. The TPD2E001 is used on TPS2513EVM-527 and benefits from the connection of the TPD2E001 VCC pin to VBUS (and \(C_{PORT} \)). For this case, the clamping voltage between GND and VBUS depends on the forward voltage drop of the clamping diodes at peak surge current.

There are alternative options such as the TPD2E2U06 which rely on the clamping voltage of the internal clamp only and do not benefit from a connection to VBUS (and \(C_{PORT} \)). An example is shown in Figure 2. The internal clamping voltage of this configuration may not protect the TPS251x as the clamping voltage is above the absolute maximum voltage rating of the TPS251x DP_IN and DM_IN pins.

3 Data Line Choke

In some cases where the signal trace length is far away from the USB connector and TVS, a data line choke such as Coilcraft 0805USB-372ML or Wurth 744231371 may be used. This can provide additional ESD margin above IEC 61000-4-2, level 4 (±8-kV contact and ±15-kV air discharge). The data line choke also helps suppress EMI generated by the local dc/dc converter.

Copyright © 2016, Texas Instruments Incorporated
4 PCB Layout and Routing

4.1 TVS Placement and Hookup

The TVS should be placed close to the downstream USB connector so that ESD energy is shunted back to chassis ground before it can find a discharge path within the internal circuitry of the end product. The TVS should be directly connected to the TPS251x DP_IN/DM_IN pins without any vias. Placing the TVS on the same side of the PCB as the TPS251x can help minimize any impedance between the TVS pin and TPS251x pin. Figure 3 shows a poor, good, and best method for connecting the TPS251x, TVS, and USB connector.

Use a heavy connection from TVS, VCC, and GND pins to VBUS and ground plane, respectively. Use multiple vias to make the connection when VBUS and ground are on internal layers.
5 Extended ESD Performance

For a dedicated charging port, ESD performance can be extended beyond level 4 because there are no high-speed USB signal integrity concerns. The configurations shown in Figure 4 have been tested successfully up to ±12-kV contact and ±20-kV air discharge.

![Figure 4. Extended ESD Protection Circuit Examples](image)

6 Conclusion

The guidelines in this application report provide a robust solution for ESD suppression in USB charging based devices. Protection up to and above ±8-kV contact and ±15-kV air discharge are achieved by proper PCB layout and choice of the TVS. Additionally, two examples are shown which can extend ESD performance beyond level 4.

7 References

1. Data Sheet: TPS2513 USB Dedicated Charging Port Controller (SLVSBY8)
3. Application Report: Design Considerations for System-Level ESD Circuit Protection (SLYT492)
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications
- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-apps
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video
- **TI E2E Community**: e2e.ti.com