ABSTRACT
The TPS2660 eFuse provides integrated protection to various system faults such as overcurrent, overvoltage, undervoltage, short-circuit, and reverse input polarity protection. Integrated reverse input polarity protection helps to protect electronic systems from reverse input supply due to miswiring. This application note describes methods to handle the fault of the TPS2660 by downstream circuits under a reverse input polarity condition.

Contents
1 Introduction ... 1
2 Fault Status Monitoring Using TPS2660 eFuse ... 2
3 Fault Status Monitoring During Reverse Input Supply Connection 3
4 Suggested Fault Handling Methods ... 4
5 Conclusion ... 5

List of Figures
1 TPS2660 Power Good Indication Using FLTb ... 2
2 TPS2660 Fault Status Monitoring Using MCU ... 2
3 Fault Status During Reverse Input Supply Connection .. 3
4 Power Supply Sequence Where FLTb Sinks More Current ... 4
5 Proposed System Fix With Series Current Limiting Resistor ... 4
6 Proposed System Fix With Blocking Diode ... 5

List of Tables
1 Maximum DC Current versus Reverse Supply Voltage .. 3

Trademarks
All trademarks are the property of their respective owners.

1 Introduction
A PLC system is usually powered by an external 24-V DC power supply to provide power to the controller unit, backplane, and I/O modules within the PLC system. Input protection circuits are required to protect the PLC system from system faults such as overcurrent, overvoltage, and overload. Because the input supply connectors are screw type, there can always be a possibility of reverse connections at the input supply.

The TPS2660 eFuse protects downstream circuits from various systems faults including integrated protection to reverse input supply conditions (see the TPS2660 reference design). This device provides status monitor functions like fault indication and load current monitor, which is used by a downstream microcontroller unit (MCU) to take control decisions or a DC/DC converter to do power sequencing.
2 Fault Status Monitoring Using TPS2660 eFuse

The FLTb signal of the TPS2660 combines power good indication along with system faults such as overload, overvoltage, undervoltage, and shutdown. This combination enables downstream loads like DC/DC converters to turn on heavy loads after power good indication. An application example where FLTb is directly connected to enable pin of a DC/DC converter is shown in Figure 1. During startup, FLTb is pulled low by the TPS2660 eFuse initially and is released after eFuse output is fully ON. Pullup resistor R4 and pulldown resistor R5 are used to scale down the pullup voltage and are chosen based on DC/DC converters’ enable threshold voltage and its operating maximum rating.

Figure 1. TPS2660 Power Good Indication Using FLTb

Alternatively, the FLTb signal can be used by an external MCU to take control decisions under various systems fault conditions. An application example where FLTb is directly connected to the IO pin of the MCU and pulled up to the 5-V IO supply is shown in Figure 2.

Figure 2. TPS2660 Fault Status Monitoring Using MCU
3 Fault Status Monitoring During Reverse Input Supply Connection

During a faulty reverse input supply connection, the FLTb pin of the TPS2660 can sink current more than its absolute maximum rating under certain power supply sequence. In particular, after a normal power-up and power-down sequence, FLTb pin remains pulled to RTN to indicate brownout faults. Now, if a reverse input supply is applied immediately, the FLTb pin sinks current back into the supply through an external DC/DC converter enable pin or MCU IO pin as it remains pulled to RTN. The current flow path during a reverse input supply connection is indicated in Figure 3.

Figure 3. Fault Status During Reverse Input Supply Connection

A specific power supply sequence where FLTb sinks more current is shown in Figure 4 and described below.

- A normal power up is followed by a normal power down.
- The FLTb switch is pulled low to RTN due to a reverse current blocking fault or undervoltage fault.
- A reverse input supply is applied with a slew rate of $-50 \mu V/\mu s > dVIN/dt > -500 mV/\mu s$ within 15 minutes.
- The FLTb switch remains pulled low to RTN and results in a current conduction path shown in Figure 3.

During this reverse input supply sequence, a 60-mA ±20% DC current can flow through the ESD structure of the IO pin of the MCU or the enable pin of the DC/DC converter for a 24-V reverse supply. Table 1 shows the maximum DC current that can flow through the FLTb pin for various power supply voltages. Also note that this DC current does not flow for subsequent reverse supply connections because the FLTb switch is opened after the first reverse supply is removed.

Table 1. Maximum DC Current versus Reverse Supply Voltage

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>REVERSE SUPPLY VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>–18 V</td>
</tr>
<tr>
<td>Maximum DC current through FLTb</td>
<td>45 mA ±20%</td>
</tr>
</tbody>
</table>
Suggested Fault Handling Methods

4 Suggested Fault Handling Methods

Generally, ESD structures of MCUs or DC/DC converters can take 60 mA of current for a short period during their operating life without degradation in performance. However, if the ESD structures are not able to handle 60 mA of current during a faulty reverse input supply, the current through FLTb needs to be limited by external means.

Adding a current limit resistance of $R_5 > V_{INMAX}/2$ mA between FLTb and IO of MCU as shown in Figure 5 limits current through ESD structure to be less than 2 mA. R_5 can be chosen so that current through the ESD structure is less than the absolute maximum ratings of the IO pin of the MCU or the enable pin of the DC/DC converter, and current through the FLTb pin of the TPS2660 is always less than its absolute maximum rating of 10 mA.

Figure 4. Power Supply Sequence Where FLTb Sinks More Current

Figure 5. Proposed System Fix With Series Current Limiting Resistor
Sometimes it is not feasible to place a resistor in series to FLTb. Consider the system shown in Figure 1 where FLTb signal provides power good indication to the DC/DC converter. Pullup and pulldown resistors R4 and R5 must be scaled up if a 40-kΩ resistor is added in series to FLTb. For example, on a 24-V power supply application with a range of 18 V to 36 V, R4 and R5 are 70 kΩ and 5 kΩ, respectively, for 1.23 V of an enable threshold and 0.5 V of a shutdown threshold. Now with a 40-kΩ series in place to limit current through FLTb, R4 and R5 must be scaled to 2.8 MΩ and 200 kΩ, respectively, to meet both the enable and shutdown thresholds. This scaling is not always possible because the current through R4 and R5 are 12 µA at maximum and can become comparable to a leakage current > 1 µA of the enable pin of DC/DC converter. Furthermore, a shift in the threshold across temperature can be very wide due to the variation of leakage current over temperature.

In this case, it is recommended to place D1, a 60-V rated blocking diode like 1N4148WS as shown in Figure 6, to block the current through FLTb and modify R4 and R5 to accommodate for the forward drop of D1.

![Figure 6. Proposed System Fix With Blocking Diode](image)

5 Conclusion

In a PLC system, possible system issues with the TPS2660 fault handling during a specific reverse power supply sequence are highlighted, and two methods to overcome— using a current limiting resistor or a blocking diode—are discussed in this application note.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include: without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated