ADS809 analog-to-digital converter with large input pulse signal

By Hui-Qing Liu (Email: liu_hui-qing@ti.com)
Applications Engineer, High-Speed Products

Introduction
The Texas Instruments (TI) ADS809 is a 12-bit, 80-MHz pipeline analog-to-digital converter (ADC). It has high speed, high resolution, high-input bandwidth, and a high signal dynamic range. Its many other good features include good signal-to-noise-ratio (SNR), good linearity, low jitter, flexible clocking, an over-range indicator (OVR), “data valid” output, three-state output, an internal or external reference, and a single-ended or differential input configuration. It can be used for broadband communications, test equipment, medical instrumentation, CCD imaging, and other fast-ADC applications.

In these applications the input analog signal applied to the ADS809 varies and may be a DC, AC, narrow band, wide band, or pulse signal with a large amplitude. The sampling clock used for these applications can be up to 80 MHz with a uniform or non-uniform clock phase. Different applications require different critical features of the ADS809. In some conventional sampling applications, the ADC input analog signal is smooth with a large amplitude, and the SNR and spurious-free dynamic range (SFDR) are critical; while in some small-signal sampling applications, the SFDR and full-scale (FS) step-acquisition time are not as critical. However, the FS step-acquisition time is critical in large-signal sampling applications, especially when the sampling clock has to be high-frequency with a non-uniform phase and the analog input pulse signal is large (for example, 2 V). In this case the input signal has a sharp edge with a large voltage amplitude, and the pulse edge could be very close to the sampling clock edge due to sampling clock phase variations. If the ADC does not have fast step response for the signal settling, the next ADC sample after the pulse edge will be unstable, which is undesirable. Therefore it is critical for the ADC to have a fast settling time when a large input pulse signal is sampled. Similarly, when the input pulse is over full-scale range (FSR), it is important for the ADC to have a fast over-range recovery time. This is tough for any ADC in applications where the input pulse signal is large and sampling speed is very high with a non-uniform clock phase. However, the ADS809 works well with this type of application. This article presents the results of recent lab tests that further prove the ADS809’s fast step response with a large, FS input pulse. The test data also covers the ADS809’s response to over-range conditions.

Over-FSR performance of the ADS809
The ADS809’s over-voltage condition is defined as the input voltage in excess of its maximum linear conversion range. The voltage FSR of the ADS809 can be set as 2 Vp-p, 1.5 Vp-p, 1 Vp-p, or another range based on the internal or external voltage reference configuration. For single-ended input, the maximum voltage at the ADS809 input pin is +FS (¼ FSR above 2.5-V common-mode voltage), and the minimum voltage at input is −FS (¼ FSR below 2.5-V common-mode voltage). For differential input, +FS is ¼ FSR above 2.5-V common-mode voltage, and −FS is ¼ FSR below 2.5-V common-mode voltage. For the input voltage over FSR, the ADS809 has control features that include 12-bit data-code control and an OVR.

Figure 1. Output of ADS809 with input pulse over FSR at 66-MHz sampling clock
The digital output code of the ADS809 is straight offset binary or binary two's complement. In straight offset binary format, when the input voltage is maximum, the ADS809 outputs all 12 data bits as 1s (digital value = 4095); and when the input voltage is minimum, the ADS809 outputs all 0s. When the input voltage is 0 (at the middle of the FSR) or only the common-mode voltage, the ADS809 outputs 100000000000 (digital value = 2048). The ADS809 will output data from 0 to 4095 when the input voltage is from –FS to +FS – LSB. The ADS809 will output 4095 when the input voltage is above +FS, and will output 0 when the input voltage is below –FS.

The ADS809 output-code control was tested with the ADC sampling clock at 66 MHz and the input differential pulse amplitude at 2.8 V (0.8 V over FSR). The test result shows that the ADS809 has stable output-code control and quick over-range recovery from the input pulse signal. This is shown in Figure 1. The ADS809 samples 255 digital output samples at 66 MSPS from an over-FSR input pulse. The data shows that all the bits are stable at 1 when the input pulse signal is over +FS, and stable at 0 when the input pulse signal is under –FS. The data also shows that when the input pulse signal goes from over FS to under FS or vice versa, the output of the ADS809 tracks the input step change and stays at 4095 or 0 without any miss code or bit flip.

Another over-FSR control feature of the ADS809 is an OVR output pin, which indicates over-range conditions. The OVR output is a function of the reference voltage and the output data bits, so it has the same pipeline delay as the output data bits. The OVR is logical low if the input signal is within the FSR, and logical high if the input signal is over +FS or under –FS. The OVR changes from logical low to high, or logical high to low, immediately following the change of the output data. When this happens, the input voltage changes from inside the FSR to outside the FSR or vice versa. When the input signal continues under or over FS, the OVR always remains high. When the input signal changes from under FS to over FS or vice versa, the OVR changes from high to low for ½ CLK period, then changes to high again. In other words, the OVR outputs a negative pulse at the transition of the input voltage from over FS to under FS or vice versa (see Figure 2).

The FS step response of ADS809 and measurement method

The FS step response or step-acquisition time of the ADS809 is defined as the time for the input signal to settle or for the internal sample-and-hold (S/H) circuit to track the input signal with a certain accuracy (for example, 0.1% FS) after the FS step signal is applied to the ADS809. The ADS809 settling time of a FS step signal is 5 ns, which is typically within 0.1% FS and is the minimum required interval between the input step edge and the next sampling clock edge.

The fast step response of the ADC is important in applications with a non-uniform sampling clock, because the variation of the sampling clock phase can cause a phase change between the input pulse and the sampling clock. This is shown in Figure 3, where the rising edge of the clock samples the input pulse signal; and the time, ts, between the input step edge and the next rising edge of the sampling clock changes with the sampling clock phase change. When ts is less than the ADC’s minimum value, the ADC will take an unstable sample from the unsettled input signal, which is undesirable.
There are two ways to evaluate the step response. One is measuring the time, t_S, shown in Figure 3. Another is measuring the relative tracking time, t_D, of the sampling clock shown in Figure 4.

In the first method, the step signal (pulse edge in this case) is applied to the input of the S/H circuit directly during the tracking phase. By delaying the input pulse or sampling clock, we can find the minimum t_S, the first stable sample location after the pulse edge, where the pulse signal level has been recovered with the accuracy specified in the data sheet. This minimum t_S is the step response of the ADC. In this method, highly accurate measurement is needed. The signal input path of the ADC should be clean. Large external input capacitance from the board can cause signal step edge distortion, and poor board layout with source impedance mismatch may cause energy reflection or ringing. The probe capacitance of the oscilloscope is also a concern. The shape of the step edge and the detailed timing between the step signal and the ADS809 sampling clock should be carefully measured, including the ADS809 aperture time.

The second and simpler method of step-response evaluation is to measure the clock's tracking time, t_D, shown in Figure 4. In this method the clock's tracking edge appears after the input signal step edge. The clock's tracking edge triggers the ADS809 S/H circuit, changing the previous voltage at the sampling capacitor to the current voltage of the input pulse. The step-response time of the ADS809 S/H circuit should be the same as in the first method (measuring t_S) due to the same RC constant. If the tracking time during t_D measurement is too short, the first sample after the step signal will be unstable. The minimum tracking time of the ADC should be less than or close to half of the sampling clock cycle at the maximum speed specified.

Bench test of ADS809 step response

A real bench test was performed to determine the ADS809 step response with the method shown in Figure 3 (measuring t_S). The basic test block diagram of the ADS809 is shown in Figure 5. The ADS809 was configured with an internal reference, a differential analog input with 2-V FSR, a differential clock input, and an external 2.5-V common-mode voltage for the analog input, with no added load on the common-mode (CM) pin except normal bypass capacitance.

The differential analog input of the ADS809 was a pulse from the pulse generator with a frequency of 3.3 MHz and an amplitude of 2.92 to 2.08 V (high to low) at each analog input, near FSR. This input produced the digital output values of 3770 and 300 (high and low), including a small amount of DC offset. The input pulse's transition from high to low was used as the step signal in the bench test. The single-ended, 66-MHz sampling clock from the pulse generator was converted differentially through a differential translator. A Tektronix logic analyzer (TLA) was used to collect the digital output of the ADS809 to determine whether the sample was stable. After the input step signal, the digital value of the first sample should be 300, within an accuracy.
of 0.1% FS, if the time interval between the step signal and the clock sampling edge is 5 ns or more as specified.

Three measurements were necessary in this bench test: aperture delay; input signal timing between the sampling clock and the input pulse; and the digital output of the ADS809 with input pulse delay.

The aperture delay, t_A, is the time from the rising edge of the sampling clock to the time when the sampling actually happens (see Figure 6). The data sheet provides only a typical value for t_A (3 ns).

In the bench test the aperture delay was found by measuring the MSB and the time from the rising edge of the sampling clock to the falling edge of the pulse.

Figure 6 shows the measurement of the input signal timing between the sampling clock and the input pulse at zero delay. This measurement provides pulse edge information and a time reference for the input signal delay. The measurement was taken by Tektronix scope at the ADS809 input and clock input pins. The measurement data is shown in Table 1.

After the input timing was measured, the input pulse delay, t_{Del}, was up to 12 ns in steps of 1 ns or less. When t_{Del} was 0, the time from the input pulse falling edge to the next rising edge of the sampling clock, t_{FR}, was 6.59 ns; and Sample A, the first sample after the high-to-low transition of the input pulse, was located at 9.59 ns ($t_{FR} + t_A = t_{FA}$) from the pulse falling edge (see Figure 6). With the increase of the input pulse delay, t_{FR} decreased and Sample A moved close to the falling edge of the input pulse. When the pulse delay was more than 9.5 ns, Sample A moved to the left side of the falling edge of the input pulse (see Figure 7).

Table 1. Bench test measurement data

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MEASURED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input pulse rising time (10% to 10%), t_{PR1}</td>
<td>1.1 ns at analog input pin IN</td>
</tr>
<tr>
<td>Input pulse falling time (10% to 10%), t_{PF1}</td>
<td>0.8 ns at analog input pin IN</td>
</tr>
<tr>
<td>Input pulse rising time (0.01% to 0.01%), t_{PR2}</td>
<td>2.7 ns at analog input pin IN</td>
</tr>
<tr>
<td>Input pulse falling time (0.01% to 0.01%), t_{PF2}</td>
<td>2.8 ns at analog input pin IN</td>
</tr>
<tr>
<td>Clock rising edge to pulse rising edge (50% to 50%), t_{RR}</td>
<td>8.5 ns at pins CLK and IN</td>
</tr>
<tr>
<td>Pulse falling edge to clock rising edge (50% to 50%), t_{FR}</td>
<td>6.59 ns at pins CLK and IN</td>
</tr>
</tbody>
</table>

Figure 6. Timing measurement of sampling clock and input pulse at zero delay

Figure 7. Sample A moves with step signal delay
Sample A was collected by TLA, and its digital data is shown in Table 2. The Sample A output value of the ADS809 should be 300 (within an accuracy of ±0.1% FS) if \(t_{FR} \) is 2 ns or longer. In other words, Sample A is settled if the time \(t_{FA} \) (\(t_{FR} + t_{A} \)) from the falling edge of the input pulse to the actual sampling time of Sample A, is 5 ns or longer. For example, the digital value of Sample A is 299 when \(t_{FA} \) is 5.59 ns, and 300 when \(t_{FA} \) is about 9.59 ns, due to the input signal tracked by the ADS809 at these times. Sample A is unstable (the digital value is out of the range of 300 ± 0.1% FS) if \(t_{FA} \) is shorter than 5 ns. This is shown in Table 2 and Figure 8. For example, when \(t_{FA} \) is 3.59 ns, the digital value of Sample A is 358, which is significantly higher than 300, because the input signal has not recovered its low level after the high-to-low step of the input pulse. When \(t_{FA} \) is between 0.09 and –0.01 ns (see Table 2), Sample A hits the center of the falling edge or the middle scale of the ADS809. At this point \(t_{FR} \) reflects the aperture time of the ADS809. Continually delaying the input pulse eventually moves Sample A into the high level of the input pulse. When \(t_{FA} \) is less than –1.41 ns, the digital value of Sample A is about 3770 (see Figure 8). By this measurement, the step-acquisition time of the ADS809 is evaluated as 5 ns, within an accuracy of 0.1% FS, which matches the data sheet.

The test data introduced here includes a small error from the input timing measurement by the scope. There are actually many factors that can affect this type of measurement. The main one to point out here is that different input signal path conditions will have different digital values of Sample A at the same time space, \(t_{FA} \). This could lead to a misinterpretation of the step-response time measurement. During the measurement, three different input signal path conditions were tested. In Condition 1, a 100-pF capacitor was added at the input of the ADS809 on the EVM board. In Condition 2, this 100-pF capacitor was taken off the board. In Condition 3, the 100-pF capacitance was taken off the board and a 25-Ω damping resistor was added on the input path of the board. All three conditions ran with the sampling clock at 66 MHz, the input pulse at 3.3 MHz, the differential pulse amplitude at 1.68 V, and a zero delay to all input signals. The test data shows significant variation of the digital value of Sample A. Condition 1 produced the largest variation, mainly caused by edge distortion of the input pulse due to the external capacitor. Condition 3 produced the smallest variation, mainly caused by board layout and mismatch of the signal source impedance.

<table>
<thead>
<tr>
<th>(t_{FA}) (ns)</th>
<th>(t_{FR}) (ns)</th>
<th>(t_{FA}) (ns)</th>
<th>A (digital value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.59</td>
<td>9.59</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>5.59</td>
<td>8.59</td>
<td>299</td>
</tr>
<tr>
<td>2</td>
<td>4.59</td>
<td>7.59</td>
<td>301</td>
</tr>
<tr>
<td>3</td>
<td>3.59</td>
<td>6.59</td>
<td>298</td>
</tr>
<tr>
<td>4</td>
<td>2.59</td>
<td>5.59</td>
<td>299</td>
</tr>
<tr>
<td>5</td>
<td>1.59</td>
<td>4.59</td>
<td>315</td>
</tr>
<tr>
<td>6</td>
<td>0.59</td>
<td>3.59</td>
<td>358</td>
</tr>
<tr>
<td>7</td>
<td>–0.41</td>
<td>2.59</td>
<td>480</td>
</tr>
<tr>
<td>8</td>
<td>–1.41</td>
<td>1.59</td>
<td>739</td>
</tr>
<tr>
<td>9</td>
<td>–2.41</td>
<td>0.59</td>
<td>1277</td>
</tr>
<tr>
<td>9.5</td>
<td>–2.91</td>
<td>0.09</td>
<td>1902</td>
</tr>
<tr>
<td>9.6</td>
<td>–3.01</td>
<td>–0.01</td>
<td>2195</td>
</tr>
<tr>
<td>10</td>
<td>–3.41</td>
<td>–0.41</td>
<td>3334</td>
</tr>
<tr>
<td>11</td>
<td>–4.41</td>
<td>–1.41</td>
<td>3768</td>
</tr>
<tr>
<td>12</td>
<td>–5.41</td>
<td>–2.41</td>
<td>3767</td>
</tr>
</tbody>
</table>

Table 2. Digital value of Sample A versus input signal delay

![Figure 8. Step-response measurement data](image-url)
Conclusion
The ADS809, with 12-bit resolution and an 80-MSPS sampling speed, is used not only for conventional but also for nonconventional ADC sampling applications. An example of the latter is an ADC with a high-speed sampling clock with a non-uniform sampling phase that converts a large-amplitude input pulse signal. Such an application requires fast ADC settling time. This article has provided some test data based on the conditions of this type of application, including an over-FS control function and FS step-response measurement. The test data shows that the ADS809 has stable output-code control and stable OVR output when the input pulse signal is over 2-V FS. The ADS809 can convert a 2-V FS input pulse signal at an 80-MHz sampling rate and produce a stable output code. An actual bench test of the ADS809's FS step response was conducted; and the test method, procedure, and test results have been presented. The test data shows that the ADS809 has a FS step-acquisition time of 5 ns. It also indicates that the ADS809 has a large input dynamic range, a high-input bandwidth, and a fast, FS step response, making it suitable for large-signal sampling applications.

References
For more information related to this article, you can download an Acrobat Reader file at www-s.ti.com/sc/techlit/litnumber and replace “litnumber” with the TI Lit. # for the materials listed below.

Document Title TI Lit. #
1. “12-Bit, 80MHz Sampling Analog-to-Digital Converter,” ADS809 Data Sheet sbas170

Acknowledgments
Special thanks go to Bryan McKay for his work on the test board and to Wallace Burney for his article review.

Related Web sites
analog.ti.com
www.ti.com/sc/device/ADS809
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephone: www.ti.com/telephone
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Internet

TI Semiconductor Product Information Center Home Page
support.ti.com

TI Semiconductor KnowledgeBase Home Page
support.ti.com/knowledgebase

Product Information Centers

Americas
- Phone: +1(972) 644-5580
- Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
- Phone: +3(0) 27 45 54 32
- Netherlands (English): +31(0) 546 87 95 45
- Austria: +3(0) 95 785 0145
- France: +3(0) 1 30 70 11 84
- Sweden (English): +46(0) 8567 555 22
- Germany: +40(0) 1816 80 31 11
- United Kingdom: +44(0) 1604 66 33 99
- Italy: 800 79 11 37
- Fax: +49(0) 8161 80 2045
- Internet: support.ti.com/sc/pic/euro.htm

Japan
- Phone: +81-3-3344-5317
- Domestic: 0120-81-0036
- Internet/Email: support.ti.com/sc/pic/japan.htm
- Internet: www.ti.co.jp/pic

Asia
- Phone: +886-2-2378-6800
- Domestic: Toll-Free Number
- Australia: 1-800-999-084
- New Zealand: 0800-446-934
- China: 800-820-8882
- Philippines: 1-800-765-7404
- Hong Kong: 800-95-5941
- Singapore: 800-886-1028
- Indonesia: 011-803-8861-1006
- Taiwan: 0800-008-800
- Korea: 080-551-2804
- Thailand: 081-800-8001
- Malaysia: 1-800-88-3973
- Fax: 886-2-2378-6808
- Email: tiasia@ti.com
- Internet: support.ti.com/sc/pic/as.htm
- www.ti.com/sc/pic

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases such as “will,” “may,” “might,” “can,” “could” or other similar expressions. These forward-looking statements are based on the company’s beliefs and assumptions and on information currently available to the company.

The company does not undertake any obligation to publicly update or revise any forward-looking statements.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2005 Texas Instruments Incorporated